首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-motile mutants of Rhizobium trifolii defective in either flagellar synthesis or function were isolated by transposon Tn5 mutagenesis. they were indistinguishable from motile control strains in growth in both laboratory media and in the rhizosphere of clover roots. When each non-motile mutant was grown together with a motile strain in continuous culture, the numbers of motile and non-motile organisms remained in constant proportion, implying that their growth rates were essentially identical. When inoculated separately onto clover roots, the mutants and wildtype did not differ significantly in the number of nodules produced or in nitrogen fixing activity. However, when mixtures of equal numbers of mutant and wild-type cells were inoculated onto clover roots, the motile strain formed approximately five times more nodules than the flagellate or non-flagellate, non-motile mutants, suggesting that motility is a factor in competition for nodule formation.  相似文献   

2.
Transposon Tn5-Mob mutagenesis allowed the selection of a Sinorhizobium fredii HH103 mutant derivative (SVQ 292) that requires the presence of uracil to grow in minimal media. The mutated gene, pyrF, codes for an orotidine-5 - monophosphate decarboxylase (EC 4.1.1.23). Mutant SVQ 292 and its parental prototrophic mutant HH103 showed similar Nod-factor and lipopolysaccharide profiles. The symbiotic properties of mutant SVQ 292 were severely impaired with all legumes tested. Mutant SVQ 292 formed small ineffective nodules on Cajanus cajan and abnormal nodules (pseudonodules) unable to fix nitrogen on Glycine max (soybean), Macroptitlium atropurpureum, Indigofera tinctoria, and Desmodium canadense. It also did not induce any macroscopic response in Macrotyloma axillare roots. The symbiotic capacity of SVQ 292 with soybean was not enhanced by the addition of uracil to the plant nutritive solution.  相似文献   

3.
A Tn5-induced mutant of Mesorhizobium ciceri, TL28, requiring the amino acid lysine for growth on minimal medium was isolated and characterized. The Tn5 insertion in the mutant strain TL28 was located on a 6.8-kb EcoRI fragment of the chromosomal DNA. Complementation analysis with cloned DNA indicated that 1.269 kb of DNA of the 6.8-kb EcoRI fragment restored the wild-type phenotype of the lysine-requiring mutant. This region was further characterized by DNA sequence analysis and was shown to contain a coding sequence homologous to lysA gene of different bacteria. The lys ? mutant TL28 was unable to elicit development of effective nodules on the roots of Cicer arietinum L. There was no detectable level of lysine in the root exudates of chickpea. However, addition of lysine to the plant growth medium restored the ability of the mutant to produce effective nodules with nitrogen fixation ability on the roots of C. arietinum.  相似文献   

4.
B. H. Ng 《Plant and Soil》1987,103(1):123-125
The growth, nodulation and nitrogen fixation ofCasuarina equisetifolia were compared at six levels (0–500mM NaCl) of salinity in sand culture. Dry weight of nodules, shoots and roots and N content of shoots increased at intermediate levels of salinity (50–100 mM) but decreased at 500 mM NaCl. Nodulation occurred at all NaCl levels, but at 500mM NaCl level, the nodule dry weight declined by 50% from the control. Increasing NaCl concentration of up to 200mM had little effect on the N2-fixation rate, but at 500mM NaCl level the rate decreased to 40% of the control value.  相似文献   

5.
Summary Escherichia coli Rl is an Ag+-resistant strain that, as we have shown recently, harbours at least two large plasmids, pJT1 (83 kb) and pJT2 (77 kb). Tn5-Mob was introduced into theE. coli Rl host replicon via conjugation on membrane filters. The transfer functions of plasmid RP4-4 were provided in this process and Tn5-Mob clones mated withE. coli C600 yielded Ag+-resistant transconjugants. This mobilization procedure allowed transfer and expression of pJT1 Ag+ resistance inE. coli C600. Prior to use of Tn5-Mob mobilization, it was not possible to transfer Ag+-resistant determinant(s) intoE. coli by conjugation or transformation including high-voltage electroporation.E. coli C600 containing PJTI and PJT2 displayed decreased accumulation of Ag+ similar toE. coli R1.E. coli C600 could not tolerate 0.1 and 0.5 mM Ag+, rapidly accumulated Ag+ and became non-viable. Tn5-Mob mobilization may be useful in the study of metal resistance in bacteria, especially in strains not studied for resistance mechanisms.  相似文献   

6.
Ineffective nodules of peanut induced by two nod+fixstrains of Bradyrhizobium sp. were compared with the ones inducedby nod+fix+ strain NC92. One of the fix strains, 639is a transconjugate Tn5 mutant of NC92, while the other, 7091,is an isolate from ICRISAT soil. Both induce small nodules lackingleghemoglobin and nitrogen-fixing activity. Ultrastructuralobservations revealed that the nodules of 639, have enlargedperibacteroid space and lack persistence of nodule function.The 7091-induced nodules showed impediment in bacteroid releaseand differentiation. In both the ineffective nodules large amountsof lipid bodies were found to accumulate several times in excess,compared to the effective NC92 nodules. The large lipid accumulationin absence of nitrogen fixation supports the hypothesis thatin peanut nodules lipid bodies are utilized as a supplementarysource of carbon and energy for nitrogen fixation. Peanut, lipid bodies, nitrogen fixation, nod+fix Bradyrhizobium, ultrastructure  相似文献   

7.
Two plasmids, pAgK84::Tn5-Mob from Agrobacterium radiobacter carrying genes for the production of agrocin 84, and RP4-4 from E. coli were inserted either separately or together into a strain of Rhizobium meliloti. Each of these plasmid-containing R. meliloti transconjugants was less effective than the wild type strain in their ability to fix nitrogen in Medicago tornata. The pAgK84::Tn5-Mob-containing transconjugant was significantly less effective than that containing RP4-4. The transconjugant strains were inferior to the wild type strain in their ability to nodulate seedlings and to compete for nodulation.  相似文献   

8.
9.
In an attempt to find the genes involved in salt tolerance of the highly adaptable chickpea rhizobium strain, Mesorhizobium ciceri Ca181, a Tn5 transposon insertion library was generated and screened to identify five mutants with inability to survive in the presence of 0.1 M NaCl. The genes disrupted in these mutants due to insertion of the transposon were identified by sequencing of Tn5 flanking sequences after inverse PCR. One of the mutants had a disruption in diguanylate cyclase gene which is involved in bacterial biofilm formation and persistence. The second mutant had a disruption in an ABC transporter membrane protein gene, which is involved in the uptake of nutrients and cellular osmoprotection. The third mutant had a disruption in a gene showing homology with rhamnulose 1-phosphate aldolase which has an important role in the central metabolism of L-rhamnulose. The fourth mutant had a disruption in a capsule synthesis gene and the fifth mutant had an insertion in an oxidoreductase gene. When these mutants were inoculated into the host chickpea plant under normal non-saline conditions, they formed symbiotic nodules but with severely reduced nitrogenase activity. Hence, it appears that bacterial ability to adapt to hyper-osmotic salt stress conditions is also important for its nitrogen fixing ability in the chickpea root nodules. Allele mining for variant forms of the identified genes in the germplasm resources of M. ciceri may help in the development of highly adaptive and efficient nitrogen fixing strains of the chickpea rhizobium.  相似文献   

10.
The effects of salt stress on growth, nodulation, and nitrogen accumulation in cowpea (Vigna sinensis) and mung beans (Vigna aureus) were studied in sand culture. Salinity (NaCl) retarded the growth of leaves, stem and roots of both the crops. Root growth of mung beans was more sensitive to the increase in salt stress than that of cowpea. The relative growth rates of stressed plant parts declined initially but were subsequently higher than those of control for a period, suggesting that the plants tended to adapt to unfavourable environment even while being stressed. The total nodule number, weight and nitrogen content per plant decreased due to salt treatment, which interfered with the initiation of nodules but not with their further development. There was a considerable fall in the nitrogen fixation efficiency of mung beans under saline environment; it was not so in cowpea.  相似文献   

11.
A Tn5-induced mutant strain (TL68) of Mesorhizobium ciceri unable to grow with ammonium as the sole nitrogen source was isolated and characterized. Unlike its wild-type parent (strain TAL620), the mutant had an absolute dependence on serine to grow. Cloning of the DNA region containing Tn5 and sequence analysis showed that Tn5 was inserted into the gene coding for 3-phosphoglycerate dehydrogenase, which catalyses the first step in the serine biosynthetic pathway. The role of serine biosynthesis of M. ciceri in the establishment of nitrogen-fixing symbiosis with chickpea (Cicer arietinum L) was investigated using the mutant TL68. The serA(-) mutant (TL68) was unable to elicit the development of efficient nodules on the roots of Cicer arietinum L. The addition of serine to the plant-growth medium restored the ability of the mutant to nodulate Cicer arietinum, and the nodules were able to fix nitrogen.  相似文献   

12.
AIMS: To study the genetic basis of C(4)-dicarboxylate transport (Dct) in relation to symbiotic nitrogen fixation in Mesorhizobium ciceri. METHODS AND RESULTS: A Tn5-induced mutant strain (TL16) of M. ciceri, unable to grow on C(4)-dicarboxylates, was isolated from the wild-type strain TAL 620. The mutant lacked activities of the enzymes, which use C(4)-dicarboxylates as substrate. The sequencing of the 3.2kb EcoRI fragment, which was the site of Tn5 insertion, revealed three complete and two partial open reading frames. In the mutant, Tn5 interrupted the rpoN gene, of which only one copy was there. Complementation and biochemical studies suggest that the M. ciceri rpoN activity is required for C(4)-Dct, maturation of bacteroids and symbiotic nitrogen fixation. The fine structure of the ineffective nodules produced by TL16 on Cicer arietinum L changed in comparison with those produced by the wild type. CONCLUSIONS: The mutant strain TL16 suffered a disruption in the rpoN gene. Only one copy of rpoN gene is present in M. ciceri. The mutation abolishes Dct activity. It additionally abolishes the symbiotic nitrogen fixation activity of the bacteroids in the nodules. SIGNIFICANCE AND IMPACT OF THE STUDY: This first document in M. ciceri shows that a functional rpoN gene is essential for the transport of dicarboxylic acids and symbiotic nitrogen fixation.  相似文献   

13.
Summary Mutants of Rhizobium leguminosarum which failed to fix nitrogen within nodules on peas were isolated following the insertion of the transposon Tn5 into pRL1JI, a Rhizobium plasmid known to carry the genes for nitrogenase. The sites of the Tn5 insertions were identified by restriction endonuclease mapping of cloned fragments of DNA from the mutant strains. One group of mutants was located within 4 kilobases of the structural genes for nitrogenase and another was located about 30 kilobases from this region. Two mutants from the first group, one of which appeared to be affected in a nitrogenase gene, induced nodules that contained bacterioids, but the number of plant cells containing bacteroids was less than in a normal nodule. Another group of mutants, which was located about 30 kilobases from the nitrogenase genes failed to form bacterioids. Electron microscopy of the nodules induced by these mutants indicated that there was a defect in their release from infection threads.  相似文献   

14.
15.
Summary Rhizobium sp. NGR234 in a fast-growing Rhizobium strain with a broad host range. The location and role of chromosomal genes involved in cellular metabolism or in the legume symbioses is unknown. We isolated a series of auxotrophic and antibiotic resistant mutants of NGR234 and utilized a chromosome mobilization system based on Tn5-Mob and pJB3JI; Tn5-Mob donor strains behaved like Hfr strains, transferring the chromosome polarly at high frequency from a fixed point of insertion. The use of four different strains with Tn5-Mob located at different nutritional loci in crosses with double auxotrophic recipients, allowed us to build up a circular linkage map of NGR234 based on relative recombination frequencies. Also, symbiotically important genes identified by site-directed mutagenesis, such as hemA and ntrA, could be located and mapped on the chromosome.Abbreviations Tc tetracycline - Sp spectinomycin - Rif rifampicin - Km kanamycin  相似文献   

16.
Ten aromatic amino acid auxotrophs of Sinorhizobium meliloti (previously called Rhizobium meliloti) Rmd201 were generated by random mutagenesis with transposon Tn5 and their symbiotic properties were studied. Normal symbiotic activity, as indicated by morphological features, was observed in the tryptophan synthase mutants and the lone tyrosine mutant. The trpE and aro mutants fixed trace amounts of nitrogen whereas the phe mutant was completely ineffective in nitrogen fixation. Histology of the nodules induced by trpE and aro mutants exhibited striking similarities. Each of these nodules contained an extended infection zone and a poorly developed nitrogen fixation zone. Transmission electron microscopic studies revealed that the bacteroids in the extended infection zone of these nodules did not show maturation tendency. A leaky mutant, which has a mutation in trpC, trpD, or trpF gene, was partially effective in nitrogen fixation. The histology of the nodules induced by this strain was like that of the nodules induced by the parental strain but the inoculated plants were stunted. These studies demonstrated the involvement of anthranilic acid and at least one more intermediate of tryptophan biosynthetic pathway in bacteroidal maturation and nitrogen fixation in S. meliloti. The alfalfa plant host seems to provide tryptophan and tyrosine but not phenylalanine to bacteroids in nodules.  相似文献   

17.
We evaluated response differences of normal and transformed (so-called ‘hairy’) roots of soybean (Glycine max L. (Merr.), cv L17) to the Nod-factor inducing isoflavone genistein and salinity by quantifying growth, nodulation, nitrogen fixation and biochemical changes. Composite soybean plants were generated using Agrobacterium rhizogenes-mediated transformation of non-nodulating mutant nod139 (GmNFR5α minus) with complementing A. rhizogenes K599 carrying the wild-type GmNFR5α gene under control of the constitutive CaMV 35S promoter. We used genetic complementation for nodulation ability as only nodulated roots were scored. After hairy root emergence, primary roots were removed and composite plants were inoculated with Bradyrhizobium japonicum (strain CB1809) pre-induced with 10 μM genistein and watered with NaCl (0, 25, 50 and 100 mM). There were significant differences between hairy roots and natural roots in their responses to salt stress and genistein application. In addition, there were noticeable nodulation and nitrogen fixation differences. Composite plants had better growth, more root volume and chlorophyll as well as more nodules and higher nitrogenase activity (acetylene reduction) compared with natural roots. Decreased lipid peroxidation, proline accumulation and catalase/peroxidase activities were found in ‘hairy’ roots under salinity stress. Genistein significantly increased nodulation and nitrogen fixation and improved roots and shoot growth. Although genistein alleviated lipid peroxidation under salinity stress, it had no significant effect on the activity of antioxidant enzymes. In general, composite plants were more competitive in growth, nodulation and nitrogen fixation than normal non-transgenic even under salinity stress conditions.  相似文献   

18.
The sequence of events leading up to the establishment of symbiotic nitrogen-fixation were studied in two tropical legumes, Centrosema pubescens Benth, and Vigna unguiculata L. Walp. Parameters measured included fresh and dry weights, chlorophyll and leghaemoglobin contents, as well as the activities of NADH-nitrate reductase (EC 1.6.6.1), and nitrogenase (nitric-oxide reductase-EC 1.7.99.2) in plants that were inoculated with suitable rhizobia or which were watered with potassium nitrate. Dry weight and photosynthetic activity of both species followed the sigmoidal pattern which is characteristic of most plants. Growth was little different in either a qualitative or quantitative sense whether nitrogen was supplied as nitrate or through dinitrogen fixation. Although the biochemical sequence of events was dependent on the limiting sensitivities of the individual assays used, the data suggest that nitrate reductase is the first measurable enzymatic activity in the nodules (and roots), followed by acetylene reduction and leghaemoglobin in that order. It is possible therefore, that low levels of symbiotic nitrogen fixation occur in the nodules in the absence of leghaemoglobin. Nitrate reductase activity in C. pubescens nodules was negatively exponentially correlated with nitrogenase activity of the same nodules, suggesting a changing metabolism in old nodules. These data are discussed in terms of environmental and physical factors known to control nitrogen fixation.  相似文献   

19.
Symbiotic associations between leguminous plants and nitrogen‐fixing rhizobia culminate in the formation of specialized organs called root nodules, in which the rhizobia fix atmospheric nitrogen and transfer it to the plant. Efficient biological nitrogen fixation depends on metabolites produced by and exchanged between both partners. The Medicago truncatulaSinorhizobium meliloti association is an excellent model for dissecting this nitrogen‐fixing symbiosis because of the availability of genetic information for both symbiotic partners. Here, we employed a powerful imaging technique – matrix‐assisted laser desorption/ionization (MALDI)/mass spectrometric imaging (MSI) – to study metabolite distribution in roots and root nodules of M. truncatula during nitrogen fixation. The combination of an efficient, novel MALDI matrix [1,8–bis(dimethyl‐amino) naphthalene, DMAN] with a conventional matrix 2,5–dihydroxybenzoic acid (DHB) allowed detection of a large array of organic acids, amino acids, sugars, lipids, flavonoids and their conjugates with improved coverage. Ion density maps of representative metabolites are presented and correlated with the nitrogen fixation process. We demonstrate differences in metabolite distribution between roots and nodules, and also between fixing and non‐fixing nodules produced by plant and bacterial mutants. Our study highlights the benefits of using MSI for detecting differences in metabolite distributions in plant biology.  相似文献   

20.
A transposon-induced mutant (T8-1) of Bradyrhizobium japonicum (61A76) was unable to develop into the nitrogen-fixing endosymbiotic form, the bacteroid. Comparison between this mutant and T5-95, an ineffective (non-nitrogen fixing, Fix-) mutant, confirmed that the process of bacteroid development is a distinct phase of differentiation of the endosymbiont and is independent of nitrogen fixation activity. The T8-1 mutant was able to induce normal-size nodules which differentiated two plant cell types and contained numerous infection threads. However, the infected cells were devoid of bacteroids. Electron microscopy revealed that the ends of the infection threads were broken down in a normal manner once the thread had penetrated the cells, but the mutant was not internalized by endocytosis. The lack of peribacteroid membrane (PBM) in nodules induced by this mutant was correlated with a reduced level of expression of plant genes coding for PBM nodulins. These genes were expressed in the T5-95 mutant, showing that the low expression in T8-1 was not due to the lack of nitrogen fixation. One of the PBM nodulins, nodulin-26, was found at normal levels in the nodules which lack PBM, suggesting that there are at least two developmental stages in PBM biosynthesis. These data suggest that a coordination of plant and Rhizobium gene expression is required for the release and internalization of bacteria into the PBM compartments of infected cells of nodules.author for correspondence  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号