首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Clostridium perfringens produces potent toxins and histolytic enzymes, causing various diseases including life-threatening fulminant diseases in humans and other animals. Aiming at utilizing a phage endolysin as a therapeutic alternative to antibiotics, we surveyed the genome and bacteriophage sequences of C. perfringens. A phiSM101 muramidase gene (psm) revealed by this study can be assumed to encode an N-acetylmuramidase, since the N-terminal catalytic domain deduced from the gene shows high homology of those of N-acetylmuramidases. The psm gene is characteristic in that it is present in phiSM101, an episomal phage of enterotoxigenic C. perfringens type A strain, SM101, and also in that homologous genes are present in the genomes of all five C. perfringens toxin types. The psm gene was cloned and expressed in Escherichia coli as a protein histidine-tagged at the N-terminus (Psm-his). Psm-his was purified to homogeneity by nickel-charged immobilized metal affinity chromatography and anion-exchange chromatography. The purified enzyme lysed cells of all C. perfringens toxin types but not other clostridial species tested, as was shown by a turbidity reduction assay. These results indicate the Psm-his is useful as a cell-wall lytic enzyme and also suggest that it is potentially useful for biocontrol of this organism.  相似文献   

2.
The objectives of the present work were to investigate the presence of Clostridium perfringens in chicken meat parts (breast, wing, drumstick and leg quarter) by culture methods and to detect the cpa, cpb, etx, iA, cpe and cpb2 toxin genes by multiplex PCR. A total of 200 samples, the raw chicken breasts (n: 50), wings (n: 50), drumsticks (n: 50) and leg quarters (n: 50), were collected from various retail stores. Our results demonstrated that 47 of 50 wing samples (94%), 40 of 50 leg quarter samples (80%), 34 of 50 drumstick samples (66%) and 33 of 50 breast samples (66%) were found to be contaminated with Cl. perfringens. 558 positive isolates obtained from these samples were identified as Cl. perfringens based on the microscopic examination and biochemical tests. It was detected that 545 (97·6%) of 558 Cl. perfringens isolates carried only cpa toxin gene (type A), 12 (2·1%) of them carried both cpa and cpb2 toxin gene (type A‐cpb2), one (0·1%) of them carried both cpa and cpe toxin genes (type A‐cpe), according to the multiplex PCR results, targeted cpa, cpb, cpb2, cpe, etx and iA genes.

Significance and Impact of the Study

This study is the first report of detection of cpe and cpb2 toxin genes in Clostridium perfringens isolated from chicken meats in Turkey. The multiplex PCR protocol described in this study is useful for rapid detection of Clostridium perfringens toxin genes simultaneously in one‐step PCR.  相似文献   

3.
In order to avoid the use of experimental animals, the polymerase chain reaction (PCR) method was applied to differentiate Clostridium perfringens into five toxin types. Twenty-two out of 23 strains tested produced the toxin(s) corresponding to the toxin gene(s) identified by PCR, and vice versa. Consequently, the gene typing was consistent with conventional typing by animal tests. Twenty-five strains were identified as types different from original ones by the PCR method as well as a toxin neutralization test. These findings suggest that the PCR method, which is easy and timesaving, is applicable to identify the toxin types of C. perfringens as an alternative to animal tests, and that beta-, epsilon- and iota-toxin genes might be lost by long-term preservation. The reasons why the strains lost the genes are discussed.  相似文献   

4.
A promoter selection vector for Clostridium perfringens genes was constructed from a C. perfringens-Escherichia coli shuttle vector, pJIR418. The plasmid carries a promoterless chloramphenicol acetyltransferase gene (catP), derived from pIP401, downstream of the multiple cloning sites of pUC18. When a promoter region of the phospholipase C gene was inserted into one of the cloning sites, derivatives of C. perfringens strain 13 carrying the resultant plasmid acquired resistance to chloramphenicol. This plasmid should be a useful reporter system for C. perfringens genes.  相似文献   

5.
Clostridium perfringens type D produces enterotoxemia, an enteric disease in ruminants, also known as pulpy kidney disease. Caused by epsilon toxin, enterotoxemia is a major exotoxin produced by this microorganism. Epsilon toxin is also the main component of vaccines against this enteric disorder. In this study, a standardized dot-blot was used to choose strains of C. perfringens type D that are producers of epsilon toxin. Clones producing epsilon toxin were chosen by limiting dilution; after three passages, lethal minimum dose titers were determined by soroneutralization test in mice. These clones produced epsilon toxin 240 times more concentrated than the original strain. The presence of the epsilon toxin gene (etx) was verified by polymerase chain reaction. All clones were positive, including those determined to be negative by dot-blot tests, suggesting that mechanisms in addition to the presence of the etx gene can influence toxin production. The dot-blot test was efficient for the selection of toxigenic colonies of C. perfringens type D and demonstrated that homogeneous populations selected from toxigenic cultures produce higher titers of epsilon toxin.  相似文献   

6.
Clostridium perfringens KZ1340 isolated from Antarctic soil was first classified as Clostridium plagarum and later as a lecithinase-negative variant of C. perfringens. Although the strain produced no detectable lecithinase (phospholipase C, PLC) activity in the culture supernatant, it was shown by Southern blot hybridization to possess a PLC-encoding gene (plc). To determine the cause of the PLC deficiency, we cloned and sequenced the plc gene from KZ1340. The deduced amino acid sequence consists of 398 amino acid residues, coinciding with those of the plc genes previously determined. Tyrosine was substituted for histidine at amino acid position 148, which is thought to bind a zinc ion essential for PLC activity. Northern blot analysis revealed that KZ1340 expressed the plc gene at an extremely low level. Furthermore, the plc gene cloned from C. perfringens strain 13 into a plasmid was expressed weakly in KZ1340, compared to that in strain 13. This indicates that the former strain represses plc gene expression in trans. When a phylogenetic tree of plc genes was constructed, the KZ1340 plc gene formed a monophyletic branch along with those of various other C. perfringens strains, supporting the classification of the strain as a variant of C. perfringens.  相似文献   

7.
8.
Clostridium perfringens KZ1340, previously classified as Clostridium plagarum, is an isolate from Antarctic soil, and was identified as an α, θ-, and κ-toxin non-producing variant. On Southern hybridization, the variant was found to be defective in the pfoA (θ-toxin) gene, but the plc (α-toxin) and colA (κ-toxin) genes were present on the same EcoRI fragment as in the standard strain, NCTC8237. Northern analysis revealed that mature plc mRNA was transcribed in KZ1340 though less efficiently than in NCTC8237, while no mature colA mRNA was present in KZ1340. After transformation of the pfoA and plc genes into the KZ1340 via shuttle vector, pJIR418, the pfoA gene was successfully expressed but the plc gene was not efficiently expressed, suggesting that in KZ1340 there is negative regulation of plc gene expression. Toxin-deficient C. perfringens KZ1340 might be a suitable host for expression analysis of the pfoA gene and other clostridial virulence genes, if expressed efficiently, because it produces a small amount of extracellular toxins.  相似文献   

9.
The 3′-flanking region of the perfringolysin O (theta-toxin) gene (pfoA) of Clostridium perfringens was analyzed by chromosome walking. A total of 5,363 bp of the downstream region of the pfoA gene was sequenced and four open reading frames were found. ORF54 and ORF80 were found to be homologous to genes coding for membrane-bound transporter proteins of other bacteria and the β-galactosidase gene (bgaB) of Bacillus stearothermophilus, respectively. ORF80 was named the pbg gene. Clones which showed β-galactosidase activities were selected from a λFIXII genomic library of C. perfringens by blue plaque screening using X-Gal as a substrate. Four clones whose plaques showed blue appearances were obtained. Two of the four clones hybridized with the pbg probe but the others did not, indicating that there are two distinct β-galactosidase genes in C. perfringens. The pbg gene was subcloned into pBR322 and was successfully expressed in Escherichia coli, suggesting that the pbg gene codes for a β-galactosidase of C. perfringens.  相似文献   

10.

Background  

Clostridium perfringens is a Gram-positive anaerobic bacterium causing severe diseases such as gas gangrene and pseudomembranosus colitis, that are generally due to the secretion of powerful extracellular toxins. The expression of toxin genes is mainly regulated by VirR, the response regulator of a two-component system. Up to now few targets only are known for this regulator and mainly in one strain (Strain 13). Due to the high genomic and phenotypic variability in toxin production by different strains, the development of effective strategies to counteract C. perfringens infections requires methodologies to reconstruct the VirR regulon from genome sequences.  相似文献   

11.
In developing Clostridium perfringens as a safe vaccine vector, the alpha toxin gene (plc) in the bacterial chromosome must be permanently inactivated. Disrupting genes in C. perfringens by traditional mutagenesis methods is very difficult. Therefore, we developed a new strategy using group II intron-based Target-Tron technology to inactivate the plc gene in C. perfringens ATCC 3624. Western blot analysis showed no production of alpha toxin protein in the culture supernatant of the plc mutant. Advantages of this technology, such as site specificity, relatively high frequency of insertion, and introduction of no antibiotic resistance genes into the chromosome, could facilitate construction of other C. perfringens mutants.  相似文献   

12.
An RP4-oriT shuttle vector pJIR1457 originally developed forClostridium perfringenswas successfully transferred by conjugation fromEscherichia colitoClostridium botulinumtype A strains and to a nontoxigenicC. botulinumtype A–transposon Tn916mutant strain lacking the entire toxin gene cluster. The light chain (LC) of botulinum toxin was highly expressed in the toxin deletion mutant strain from a pJIR1457 construct containing the recombinant botulinal gene for LC. This shuttle vector system will be valuable for genetic analysis ofC. botulinumand will enable genetic manipulation and recombinant expression studies of botulinum neurotoxins as pharmaceutical agents.  相似文献   

13.

Background

Although useful for probing bacterial pathogenesis and physiology, current random mutagenesis systems suffer limitations for studying the toxin-producing bacterium Clostridium perfringens.

Methodology/Principal Findings

An EZ-Tn5-based random mutagenesis approach was developed for use in C. perfringens. This mutagenesis system identified a new regulatory locus controlling toxin production by strain 13, a C. perfringens type A strain. The novel locus, encoding proteins with homology to the AgrB and AgrD components of the Agr quorum sensing system of Staphylococcus aureus and two hypothetical proteins, was found to regulate early production of both alpha toxin and perfringolysin O (PFO) by strain 13. PFO production by the strain 13 ΔagrB mutant could be restored by genetic complementation or by physical complementation, i.e. by co-culture of the strain 13 ΔagrB mutant with a pfoA mutant of either strain 13 or C. perfringens type C CN3685. A similar AgrB- and AgrD-encoding locus is identifiable in all sequenced C. perfringens strains, including type B, C, D, and E isolates, suggesting this regulatory locus contributes to toxin regulation by most C. perfringens strains. In strain 13, the agrB and agrD genes were found to be co-transcribed in an operon with two upstream genes encoding hypothetical proteins.

Conclusions/Significance

The new Tn5-based random mutagenesis system developed in this study is more efficient and random than previously reported C. perfringens random mutagenesis approaches. It allowed identification of a novel C. perfringens toxin regulatory locus with homology to the Agr system of S. aureus and which functions as expected of an Agr-like quorum sensing system. Since previous studies have shown that alpha toxin and perfringolysin O are responsible for strain 13-induced clostridial myonecrosis in the mouse model, the new agr regulatory locus may have importance for strain 13 virulence.  相似文献   

14.
Clostridium perfringens is a pathogen of great concern in veterinary medicine, because it causes enteric diseases and different types of toxaemias in domesticated animals. It is important that bacteria in tissue samples, which have been collected in the field, survive and for the classification of C. perfringens into the correct toxin group, it is crucial that plasmid-borne genes are not lost during transportation or in the diagnostic laboratory. The objectives of this study were to investigate the survival of C. perfringens in a simulated transport of field samples and to determine the stability of the plasmid-borne toxin genes cpb1 and etx after storage at room temperature and at 4°C. Stability of the plasmid-borne genes cpb1 and etx of C. perfringens CCUG 2035, and cpb2 from C. perfringens CIP 106526, JF 2255 and 6 field isolates in aerobic atmosphere was also studied. Survival of C. perfringens was similar in all experiments. The cpb1 and etx genes were detected in all isolates from samples stored either at room temperature or at 4°C for 24–44 h. Repeated aerobic treatment of C. perfringens CCUG 2035 and CIP 106526 did not result in the loss of the plasmid-borne genes cpb1, cpb2 or etx. Plasmid-borne genes in C. perfringens were found to be more stable than generally reported. Therefore, C. perfringens toxinotyping by PCR can be performed reliably, as the risk of plasmid loss seems to be a minor problem.  相似文献   

15.
16.
The anaerobic bacterium Clostridium perfringens mediates clostridial myonecrosis, or gas gangrene, by producing a number of extracellular toxins and enzymes. Transposon mutagenesis with Tn916 was used to isolate a pleiotropic mutant of C. perfringens that produced reduced levels of phospholipase C, protease and sialidase, and did not produce any detectable perfringolysin O activity. Southern hybridization revealed that a single copy of Tn916 had inserted into a 2.7 kb Hindlll fragment in the C. perfringens chromosome. A 4.3 kb Pstl fragment, which spanned the Tn916 insertion site, was cloned from the wild-type strain. When subcloned into a shuttle vector and introduced into C. perfringens this fragment was able to complement the Tn916-derived mutation. Transformation of the mutant with plasmids containing the 2.7 kb Hindlll fragment, or the 4.3 kb Pstl fragment resulted in toxin and enzyme levels greater than or equal to those of the wild-type strain. The Pstl fragment was sequenced and found to potentially encode seven open reading frames, two of which appeared to be arranged in an operon and shared sequence similarity with members of two-component signal transduction systems. The putative virR gene encoded a protein with a deduced molecular weight of 30140, and with sequence similarity to activators in the response regulator family of proteins. The next gene, virS, into which Tn916 had inserted, was predicted to encode a membrane-spanning protein with a deduced molecular weight of 51 274. The putative VirS protein had sequence similarity to sensor proteins and also contained a histidine residue highly conserved in the histidine protein kinase family of sensor proteins. Virulence studies carried out using a mouse model implicated the virS gene in the pathogenesis of histotoxic C. perfringens infections. It was concluded that a two-component sensor regulator system that activated the expression of a number of extracellular toxins and enzymes involved In virulence had been cloned and sequenced. A model that described the regulation of extracellular toxin production in C. perfringens was constructed.  相似文献   

17.
《Gene》1997,203(1):65-73
A novel toxin (Beta2) and its gene were characterized from a Clostridium perfringens strain isolated from a piglet with necrotic enteritis. At the amino-acid level, Beta2 toxin (27 670 Da) has no significant homology with the previously identified Beta toxin (called Beta1) (34 861 kDa) from C. perfringens type B NCTC8533 ( Hunter, S.E.C., Brown, J.E., Oyston, P.C.F., Sakurai, J., Titball, R.W., 1993. Molecular genetic analysis of beta-toxin of Clostridium perfringens reveals sequence homology with alpha-toxin, gamma-toxin, and leukocidin of Staphylococcus aureus. Infect. Immun. 61, 3958–3965). Both Beta1 and Beta2 toxins were lethal for mice and cytotoxic for the cell line I407, inducing cell rounding and lysis without affecting the actin cytoskeleton. The genes encoding Beta1 and Beta2 toxins have been localized in unlinked loci in large plasmids of C. perfringens. In addition, Beta2 toxin-producing C. perfringens strains were found to be associated with animal diseases such as necrotic enteritis in piglets and enterocolitis in horses.  相似文献   

18.

Background  

Cysteine has a crucial role in cellular physiology and its synthesis is tightly controlled due to its reactivity. However, little is known about the sulfur metabolism and its regulation in clostridia compared with other firmicutes. In Clostridium perfringens, the two-component system, VirR/VirS, controls the expression of the ubiG operon involved in methionine to cysteine conversion in addition to the expression of several toxin genes. The existence of links between the C. perfringens virulence regulon and sulfur metabolism prompted us to analyze this metabolism in more detail.  相似文献   

19.

SUMMARY

In both humans and animals, Clostridium perfringens is an important cause of histotoxic infections and diseases originating in the intestines, such as enteritis and enterotoxemia. The virulence of this Gram-positive, anaerobic bacterium is heavily dependent upon its prolific toxin-producing ability. Many of the ∼16 toxins produced by C. perfringens are encoded by large plasmids that range in size from ∼45 kb to ∼140 kb. These plasmid-encoded toxins are often closely associated with mobile elements. A C. perfringens strain can carry up to three different toxin plasmids, with a single plasmid carrying up to three distinct toxin genes. Molecular Koch''s postulate analyses have established the importance of several plasmid-encoded toxins when C. perfringens disease strains cause enteritis or enterotoxemias. Many toxin plasmids are closely related, suggesting a common evolutionary origin. In particular, most toxin plasmids and some antibiotic resistance plasmids of C. perfringens share an ∼35-kb region containing a Tn916-related conjugation locus named tcp (transfer of clostridial plasmids). This tcp locus can mediate highly efficient conjugative transfer of these toxin or resistance plasmids. For example, conjugative transfer of a toxin plasmid from an infecting strain to C. perfringens normal intestinal flora strains may help to amplify and prolong an infection. Therefore, the presence of toxin genes on conjugative plasmids, particularly in association with insertion sequences that may mobilize these toxin genes, likely provides C. perfringens with considerable virulence plasticity and adaptability when it causes diseases originating in the gastrointestinal tract.  相似文献   

20.
Hyaluronidase (E.C. 4.2.2.1 hyaluronate lyase) or Mu toxin is one of the main components ofClostridium perfringens toxin complex. Although this enzyme has been studied for many years, data on its physico-chemical and catalytic characteristics are still quite contradictory and lack lucidity and completeness. In order to update knowledge of enzymatic properties of clostridial hyaluronidase, a chromatographically purified preparation from C. perfringens type A BP6K free of side phospholipase C (alpha toxin), neuraminidase (sialidase) and collagenase (kappa toxin) activities was obtained and characterized. The purification procedure included the following steps: processing the culture liquid with calcium phosphate gel, precipitation of the enzyme with acetone, ultrafiltration, and chromatography on Sephadex G-100 column. The purified hyaluronidase was homogenous as judged by rechromatography, SDS-PAGE and isoelectric focusing. Being a glycoprotein, the enzyme was most active at pH 5.7–6.2 (depending on the nature of the buffer used), at temperatures 37–45°C and at a relatively high ionic strength (0.15 and higher). The hyaluronidase was unstable when at pH values below 5.0 and above 9.0 as well as at temperatures below 30°C and above 50°C. The enzyme was most sensitive to Cu2+, Pb2+and Al3+ions, while the inhibitory effect of EDTA was moderate. Molecular mass of hyaluronidase was 96kDa as estimated by gel filtration and 48kDa when estimated by SDS-PAGE, suggesting that enzyme is composed of two subunits. The isoelectric point of the enzyme was 4.4. Substrate specificity of the enzyme was narrow (appart from hyaluronate, it slightly split chondroitin, but did not split heparin and various chondroitinsulphates). Moreover, unsplit glycosaminoglycans appeared to be competitive inhibitors with Kivalues 5.3×10−2, 4.9×10−2, 4.5×10−2and 4.2×10−2mg/mL for heparin, chondroitinsulphates A, B and C, respectively. The Michaelis constant in regard to potassium hyaluronate was calculated to be (15.4±2.6)×10−2mg/mL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号