首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Naturally occurring terphenyls and related compounds such as terferol and its corresponding quinone and phlebiarubrone were synthesized from 2,5-diphenyl-1,4-benzoquinone. According to the proposed biosynthetic pathway, chemical conversion of phlebiarubrone to ustalic acid, a toxic compound isolated from the poisonous mushroom, Tricholoma ustale, was examined to find a low-yield conversion to the ustalic acid dimethyl ester.  相似文献   

2.
Summary Somatic embryogenesis has been shown to be an imperfect recapitulation of stages involved to form embryos from vegetative tissues. Although abscisic acid has been implicated in normalizing development, studies that specifically investigate conversion (vegetative leaf initiation) in somatic embryos are lacking. This report documents a follow-up of a study that implicated abscisic acid as a vital factor in allowing embryos ofDaucus carota to progress to the plantlet stage. Abscisic acid was determined to enhance conversion at doses ranging from 1 to 50 µM. Younger embryo stages were more responsive to abscisic acid application with regards to plantlet recovery. Pulses of abscisic acid were shown to elicit more rapid response with younger embryo stages, indicating more plastic development. Fluridone, an abscisic acid synthesis inhibitor, was shown to dramatically reduce conversion, even at low doses (<5µM). When abscisic acid was applied concurrently with fluridone, partial restoration of conversion was observed. Histologically, fluridone was seen to cause pronounced vacuolation in the shoot apical notch which resulted in the loss of meristematic cells, negating conversion capacity. Quantitation of total cytoplasmic area showed that abscisic acid reduced vacuolar intrusion into the apical notch, while fluridone caused a significant increase in vacuolation of cells in this region. This report documents further evidence of a role for abscisic acid in plantlet establishment from somatic embryos ofDaucus carota.  相似文献   

3.
Short‐chain carboxylic acids generated by various mixed‐ or pure‐culture fermentation processes have been considered valuable precursors for production of bioalcohols. While conversion of carboxylic acids into alcohols is routinely performed with catalytic hydrogenation or with strong chemical reducing agents, here, a biological conversion route was explored. The potential of carboxydotrophic bacteria, such as Clostridium ljungdahlii and Clostridium ragsdalei, as biocatalysts for conversion of short‐chain carboxylic acids into alcohols, using syngas as a source of electrons and energy is demonstrated. Acetic acid, propionic acid, n‐butyric acid, isobutyric acid, n‐valeric acid, and n‐caproic acid were converted into their corresponding alcohols. Furthermore, biomass yields and fermentation stoichiometry from the experimental data were modeled to determine how much metabolic energy C. ljungdahlii generated during syngas fermentation. An ATP yield of 0.4–0.5 mol of ATP per mol CO consumed was calculated in the presence of hydrogen. The ratio of protons pumped across the cell membrane versus electrons transferred from ferredoxin to NAD+ via the Rnf complex is suggested to be 1.0. Based on these results, we provide suggestions how n‐butyric acid to n‐butanol conversion via syngas fermentation can be further improved. Biotechnol. Bioeng. 2013; 110: 1066–1077. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
The conversion of a cellulose-producing cell (Cel +) fromGluconacetobacter hansenii PJK (KCTC 10505 BP) to a non-cellulose-producing cell (Cel ) was investigated by measuring the colony forming unit (CFU). This was achieved in a shaking flask with three slanted baffles, which exerted a strong shear stress. The addition of organic acid, such as glutamic acid and acetic acid, induced the conversion of microbial cells from a wild type toCel mutants in a flask culture. The supplementation of 1% ethanol to the medium containing an organic acid depressed the conversion of the microbial cells toCel mutants in a conventional flask without slanted baffles. The addition of ethanol to the medium containing an organic acid; however, accelerated the conversion of microbial cells in the flask with slanted baffles. TheCel + cells from the agitated culture were not easily converted intoCel , mutants on the additions of organic acid and ethanol to a flask without slanted baffles, but some portion of theCel + cells were converted toCel mutants in a flask with slanted baffles. The conversion ratio ofCel + cells toCel mutants was strongly related to the production of bacterial cellulose independently from the cell growth.  相似文献   

5.
Enzymatic esterification of bixin by l-ascorbic acid   总被引:2,自引:0,他引:2  
Bixin, a carotenoid, was esterified by l-ascorbic acid using immobilized lipase B from Candida antarctica. The conversion of l-ascorbic acid was 25% under atmospheric pressure. Ester production was twice higher when working under reduced pressure and was third lower when norbixin was used as a substrate-acyl donor due to lipase specificity, leading to a conversion of l-ascorbic acid of 50% and 8%, respectively.  相似文献   

6.
Conversion of fatty acids by Bacillus sphaericus-like organisms   总被引:1,自引:0,他引:1  
Bacillus sphaericus species are mesophilic round-spored organisms that readily utilize fatty acid-based surfactants during growth, but their ability to modify fatty acids is unknown. Among 57 B. sphaericus-like strains tested for fatty acid transformation activity in Wallen fermentation (WF) medium, ten converted oleic acid to a new product determined by gas chromatography – mass spectrometry (GC-MS) to be 10-ketostearic acid (10-KSA). Additionally, a few other strains converted ricinoleic acid and linoleic acid to new products that remain to be characterized. Unlike most microbial hydrations of oleic acid, which produce a mixture of 10-KSA and 10-hydroxystearic acid, the conversion of oleic acid by B. sphaericus strains was unique in that 10-KSA was the sole reaction product. By replacing dextrose with sodium pyruvate in WF and adjusting to pH 6.5, conversion of oleic acid to 10-KSA by strain NRRL NRS-732 was improved from about 11% to more than 60%. Using the defined optimal conditions, the conversion reaction was scaled up in a stirred-batch reactor by using technical-grade oleic acid as substrate. This is the first report on the characterization of fatty acid conversions by B. sphaericus species. Received: 17 December 2001 / Accepted: 17 January 2002  相似文献   

7.
Summary A purified alkaline thermo-tolerant bacterial lipase from Pseudomonas aeruginosa BTS-2 was immobilized on a poly (AAc-co-HPMA-cl-MBAm) hydrogel network. The hydrogel showed approximately 95% binding efficiency for lipase (specific activity 1.96 U mg−1). The immobilized enzyme achieved 65.1% conversion of ethanol and propionic acid (100 mM each) into ethyl propionate in n-nonane at 65 °C in 9 h. When alkane of C-chain length lower than n-nonane was used as the organic solvent, the conversion of ethanol and propionic acid into ethyl propionate decreased with a decrease in the log P value of alkanes. The immobilized lipase retained approximately 30% of its original catalytic activity after five cycles of reuse for esterification of ethanol and propionic acid into ethyl propionate at temperature 65 °C in 3 h. Addition of a molecular sieve (3 ?) to the reaction mixture enhanced the formation of ethyl propionate to 89.3%. Moreover, ethanol and propionic acid when taken a molar ratio of 3:1 further promoted the conversion rate to 94%. However, an increase in the molar ratio of propionic acid with respect to ethanol resulted in a decline of ethyl propionate synthesis.  相似文献   

8.
Yang L  Wei DZ 《Biotechnology letters》2003,25(14):1195-1198
In the enzymatic synthesis of cefaclor, 3-chloro-7-d-(2-phenylglycinamide)-3-cephem-4-carboxylic acid, from phenylglycine methyl ester and 7-aminodesacetoxymethyl-3-chlorocephalosporanic acid, the in situ product could influence both the overall conversion and hydrolysis of the ester. Optimization of the parameters, such as pH 6.2, 5 °C and substrate molar ratio of 2:1, made in situ product removal improve the overall conversion from 64% to 85% (mol/mol).  相似文献   

9.
The Δ9-elongase isolated from Thraustochytrium aureum, which contains a high level of polyunsaturated fatty acids (PUFAs), was demonstrated to be associated with the synthesis of C20 PUFAs. The TaELO gene contains a 825 bp ORF that encodes a protein of 274 amino acids that shares a high similarity with other PUFA elongases. The expression of the TaELO gene in Pichia pastoris resulted in the elongation of linoleic acid (LA, C18:2; n-6) and α-linolenic acid (ALA, C18:3; n-3) to eicosadienoic acid (EDA, C20:2; n-6) and eicosatrienoic acid (ETrA, C20:3; n-3), respectively. The endogenous conversion rate of LA and ALA to EDA and ETrA was 32.68 and 38.57%, respectively. In addition, TaELO was also able to synthesize eicosenoic acid (C20:1; n-9) from oleic acid (OA, C18:1; n-9), even though the conversion level was low (2.81%). Furthermore, TaELO was able to carry out the 6Δ-elongation of γ-linolenic acid (GLA, C18:3; n-6) to dihomo-γ-linolenic acid (DGLA, C20:3; n-6) and Δ5-elongation of eicosapentaenoic acid (EPA, C20:5; n-3) to docosapentaenoic acid (DPA, C22:5; n-3). The conversion rate of GLA to DGLA and EPA to DPA were 93 and 28.36%, respectively. The TaELO protein was confirmed to have multifunctional activities, such as Δ9, Δ6, and Δ5-elongations as well as the elongation of monounsaturated fatty acid.  相似文献   

10.
Summary We have demonstrated resolution of 2-methylalkanoic acids using lipase from Candida cylindracea as a catalyst. The resolution of 2-methyldecanoic acid was more successful than that of 2-methylbutyric acid both by esterification and hydrolysis. This indicates that the resolution of the acid is dependent on the chain length of the acid moiety. The chain length of the alcohol moiety of the ester affected the resolution of the long-chain acid only. Using esterification, (R)-2-methyldecanoic acid was produced in an enantiomeric excess (e.e.) of 95% (E = 40). If the enantiomeric ratio is low (E = 3.6), as in the resolution of 2-methylbutyric acid, esterification combined with a high equilibrium conversion could be used to yield the remaining acid in a high e.e. In the hydrolytic reactions, the e.e and the equilibrium conversion were dependent on the pH and the presence of CaCl2. When octyl 2-methyldecanoate was hydrolysed at pH 8.0 in the presence of CaCl2, the (S)-acid was formed with an e.e. of 80% (E = 9), but when the hydrolysis was carried out at pH 7.5 without CaCl2, a very low e.e. and a low equilibrium conversion were observed. The latter conditions allowed the esterification of 2-methyldecanoic acid with 1-octanol even in aqueous medium. Offprint requests to: K. Hult  相似文献   

11.
The characteristics of the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene by pea (Pisum sativum L.) epicotyls and by pea epicotyl enzyme are compared. Of the four stereoisomers of 1-amino-2-ethylcyclopropane-1-carboxylic acid (AEC), only (1R,2S)-AEC is preferentially converted to 1-butene in pea epicotyls. This conversion is inhibited by ACC, indicating that butene production from (1R,2S)-AEC and ethylene production from ACC are catalyzed by the same enzyme. Furthermore, pea epicotyls efficiently convert ACC to ethylene with a low K m (66 M) for ACC and do not convert 4-methylthio-2-oxo-butanoic acid (KMB) to ethylene, thus demonstrating high specificity for its substrate. In contrast, the reported pea epicotyl enzyme which catalyzes the conversion of ACC to ethylene had a high K m (389 mM) for ACC and readily converted KMB to ethylene. We show, moreover, that the pea enzyme catalyzes the conversion of AEC isomers to butene without stereodiscrimination. Because of its lack of stereospecificity, its low affinity for ACC and its utilization of KMB as a substrate, we conclude that the reported pea enzyme system is not related to the in-vivo ethylene-forming enzyme.Abbreviations ACC 1-Amino cyclopropane-1-carboxylic acid - AEC 1-amino-2-ethylcyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - KMB 4-methylthio-2-oxobutanoic acid  相似文献   

12.
Using Novozym 435 as catalyst, the syntheses of ethyl ferulate (EF) from ferulic acid (4-hydroxy 3-methoxy cinnamic acid) and ethanol, and octyl methoxycinnamate (OMC) from p-methoxycinnamic acid and 2-ethyl hexanol were successfully carried out in this study. A conversion of 87% was obtained within 2 days at 75 °C for the synthesis of EF. For the synthesis of OMC at 80 °C, 90% conversion can be obtained within 1 day. The use of solvent and high reaction temperature resulted in better conversion for the synthesis of cinnamic acid derivatives. Some cinnamic acid esters could also be obtained with higher conversion and shorter reaction times in comparison to other methods reported in the literature. The enzyme can be reused several times before significant activity loss was observed. Revisions requested 10 January 2006; Revisions received 17 January 2006  相似文献   

13.
In order to achieve direct fermentation of an optically pure d-lactic acid from cellulosic materials, an endoglucanase from a Clostridium thermocellum (CelA)-secreting plasmid was introduced into an l-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum (∆ldhL1) bacterial strain. CelA expression and its degradation of β-glucan was confirmed by western blot analysis and enzyme assay, respectively. Although the CelA-secreting ∆ldhL1 assimilated cellooligosaccharides up to cellohexaose (although not cellotetraose), the main end product was acetic acid, not lactic acid, due to the conversion of lactic acid to acetic acid. Cultivation under anaerobic conditions partially suppressed this conversion resulting in the production of 1.27 g/l of D-lactic acid with a high optical purity of 99.5% from a medium containing 2 g/l of cellohexaose. Subsequently, D-lactic acid fermentation from barley β-glucan was carried out with the addition of Aspergillus aculeatus β-glucosidase produced by recombinant Aspergillus oryzae and 1.47 g/l of D-lactic was produced with a high optical purity of 99.7%. This is the first report of direct lactic acid fermentation from β-glucan and a cellooligosaccharide that is a more highly polymerized sugar than cellotriose.  相似文献   

14.
Asymmetric synthesis of an unnatural amino acid was demonstrated by ω-transaminase from Vibrio fluvialis JS17. l-2-Aminobutyric acid was synthesized from 2-oxobutyric acid and benzylamine with an enantiomeric excess higher than 99%. The reaction showed severe product inhibition by benzaldehyde, which was overcome by employing a biphasic reaction system to remove the inhibitory product from the aqueous phase. In a typical biphasic reaction (50 mM 2-oxobutyric acid, 70 mM benzylamine and 2.64 U/ml purified enzyme) using hexane as an extractant, conversion of 2-oxobutyric acid reached 96% in 5 h whereas only 39% conversion was obtained without the product extraction.  相似文献   

15.
Since the existence of root promoting substances that consist of a complex between auxin and another molecule has been suggested, we have examined the role of auxin conversion products in root regeneration by Pinus lambertiana embryo cuttings. Auxin conversion products were detected using radioactive forms of the auxins IAA (indoIe-3-acetic acid), NAA (a-napthaleneacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid). 10?7M NAA was more effective than 10?6M IAA at promoting rooting, yet it formed conversion products much less rapidly. Also continuous exposure to IAA was necessary for optimum root formation. Based on these and other findings, we conclude that free auxin, and not the conversion products we detected, is essential to root meristem formation.  相似文献   

16.
Some flavonoids are considered as beneficial compounds because they exhibit anticancer or antioxidant activity. In higher plants, flavonoids are secondary metabolites that are derived from phenylpropanoid biosynthetic pathway. A large number of phenylpropanoids are generated from p-coumaric acid, which is a derivative of the primary metabolite, phenylalanine. The first two steps in the phenylpropanoid biosynthetic pathway are catalyzed by phenylalanine ammonia-lyase and cinnamate 4-hydroxylase, and the coupling of these two enzymes forms a rate-limiting step in the pathway. For the generation of p-coumaric acid, the conversion from phenylalanine to p-coumaric acid that is catalyzed by two enzymes can be theoretically performed by a single enzyme, tyrosine ammonia-lyase (TAL) that catalyzes the conversion of tyrosine to p-coumaric acid in certain bacteria. To modify the p-coumaric acid pathway in plants, we isolated a gene encoding TAL from a photosynthetic bacterium, Rhodobacter sphaeroides, and introduced the gene (RsTAL) in Arabidopsis thaliana. Analysis of metabolites revealed that the ectopic over-expression of RsTAL leads to higher accumulation of anthocyanins in transgenic 5-day-old seedlings. On the other hand, 21-day-old seedlings of plants expressing RsTAL showed accumulation of higher amount of quercetin glycosides, sinapoyl and p-coumaroyl derivatives than control. These results indicate that ectopic expression of the RsTAL gene in Arabidopsis enhanced the metabolic flux into the phenylpropanoid pathway and resulted in increased accumulation of flavonoids and phenylpropanoids.  相似文献   

17.
Hydroxy unsaturated fatty acids can be used as antimicrobial surfactants. 8,11‐Linoleate diol synthase (8,11‐LDS) catalyzes the conversion of unsaturated fatty acid to 8‐hydroperoxy unsaturated fatty acid, and it is subsequently isomerized to 8,11‐dihydroxy unsaturated fatty acid by the enzyme. The optimal reaction conditions of recombinant Escherichia coli expressing Penicillium chrysogenum 8,11‐LDS for the production of 8,11‐dihydroxy‐9,12(Z,Z)‐octadecadienoic acid (8,11‐DiHODE), 8,11‐dihydroxy‐9,12,15(Z,Z,Z)‐octadecatrienoic acid (8,11‐DiHOTrE), 8‐hydroxy‐9(Z)‐hexadecenoic acid (8‐HHME), and 8‐hydroxy‐9(Z)‐octadecenoic acid (8‐HOME) were pH 7.0, 25°C, 10 g/L linoleic acid, and 20 g/L cells; pH 6.0, 25°C, 6 g/L α‐linolenic acid, and 60 g/L cells; pH 7.0, 25°C, 8 g/L palmitoleic acid, and 25 g/L cells; and pH 8.5, 30°C, 6 g/L oleic acid, and 25 g/L cells, respectively. Under these optimized conditions, the recombinant cells produced 6.0 g/L 8,11‐DiHODE for 60 min, with a conversion of 60% (w/w) and a productivity of 6.0 g/L/h; 4.3 g/L 8,11‐DiHOTrE for 60 min, with a conversion of 72% (w/w) and a productivity of 4.3 g/L/h; 4.3 g/L 8‐HHME acid for 60 min, with a conversion of 54% (w/w) and a productivity of 4.3 g/L/h; and 0.9 g/L 8‐HOME for 30 min, with a conversion of 15% (w/w) and a productivity of 1.8 g/L/h. To best of our knowledge, this is the first report on the biotechnological production of 8,11‐DiHODE, 8,11‐DiHOTrE, 8‐HHME, and 8‐HOME. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:390–396, 2017  相似文献   

18.
FORMATION OF ASPARAGINE FROM ASPARTIC ACID IN RAT BRAIN   总被引:1,自引:0,他引:1  
The synthesis of asparagine in rat brain was studied both in vitro and in vivo. A conversion in vitro of about 2 per cent of the added l -[14C]aspartic acid into asparagine was found after a 2 h incubation with the 100,000 g supernatant fraction from brain. This corresponded to a formation of 4·8 nmol of asparagine/mg of protein/h. The reaction required ATP and glutamine, and was linear with time during the 2 h incubation. When the crude mitochondrial fraction was added to the incubation mixture the reaction was inhibited, probably because of the presence of ATPase activity in the mitochondrial preparation. Inhibition by the reaction product seemed unlikely since removal of endogenous asparagine did not stimulate the reaction; only when asparagine was added at levels of 0·5 or 1·0 mm was significant inhibition found. Ammonium chloride was less effective than glutamine as an amide donor. Endogenous asparaginase (EC 3.5.1.1.) activity was low in the in vitro preparation and did not significantly affect the conversion. Synthesis of asparagine from aspartic acid did not occur in slices of brain nor was there a significant conversion of aspartic acid or glucose to asparagine after their intracerebral administration in vivo.  相似文献   

19.
Phenylacetaldehyde reductase (PAR) from Rhodococcus sp. ST-10 is useful for chiral alcohol production because of its broad substrate specificity and high stereoselectivity. The conversion of ketones into alcohols by PAR requires the coenzyme NADH. PAR can regenerate NADH by oxidizing additional alcohols, especially 2-propanol. However, substrate conversion by wild-type PAR is suppressed in concentrated 2-propanol. Previously, we developed the Sar268 mutant of PAR, which can convert several substrates in the presence of concentrated 2-propanol. In this paper, further mutational engineering of Sar268 was performed to achieve higher process yield. Each of nine amino acid positions that had been examined for generating Sar268 was subjected to saturation mutagenesis. Two novel substitutions at the 42nd amino acid position increased m-chlorophenacyl chloride (m-CPC) conversion. Moreover, several nucleotide substitutions identified from libraries of random mutations around the start codon also improved the PAR activity. E. coli cells harboring plasmid pHAR1, which has the integrated sequence of the top clones from the above selections, provided greater conversion of m-CPC and ethyl 4-chloro-3-oxobutanoate than the Sar268 mutant, with very high optical purity of products. This mutant is a promising novel biocatalyst for efficient chiral alcohol production.  相似文献   

20.
The Δ12 desaturase represents a diverse gene family in plants and is responsible for conversion of oleic acid (18:1) to linoleic acid (18:2). Several members of this family are known from plants like Arabidopsis and Soybean. Using primers from conserved C- and N-terminal regions, we have cloned a novel Δ12 desaturase gene amplified from flax genomic DNA, denoted as LuFAD2-2. This intron-less gene is 1,149-base pair long encoding 382 amino acids—putative membrane-bound Δ12 desaturase protein. Sequence comparisons show that the novel sequence has 85% similarity with previously reported flax Δ12 desaturase at amino acid level and shows typical features of membrane-bound desaturase such as three conserved histidine boxes along with four membrane-spanning regions that are universally present among plant desaturases. The signature amino acid sequence ‘YNNKL’ was also found to be present at the N terminus of the protein, which is necessary and sufficient for ER localization of enzyme. Neighbor-Joining tree generated from the sequence alignment grouped LuFAD2-2 among the other FAD2 sequences from Ricinus, Hevea, Jatropha, and Vernicia. When LuFAD2-2 and LuFAD2 were expressed in Saccharomyces cerevisiae, they could convert the oleic acid to linoleic acid, with an average conversion rate of 5.25 and 8.85%, respectively. However, exogenously supplied linoleic acid was feebly converted to linolenic acid suggesting that LuFAD2-2 encodes a functional FAD2 enzyme and has substrate specificity similar to LuFAD2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号