首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alcaligenes xylosoxydans subsp. xylosoxydans A-6 (Alcaligenes A-6) produced N-acyl-D-aspartate amidohydrolase (D-AAase) in the presence of N-acetyl-D-aspartate as an inducer. The enzyme was purified to homogeneity. The enzyme had a molecular mass of 56 kDa and was shown by sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis (PAGE) to be a monomer. The isoelectric point was 4.8. The enzyme had maximal activity at pH 7.5 to 8.0 and 50°C, and was stable at pH 8.0 and up to 45°C. N-Formyl (Km=12.5 mM), N-acetyl (Km=2.52 mM), N-propionyl (Km=0.194 mM), N-butyryl (Km=0.033 mM), and N-glycyl (Km =1.11 mM) derivatives of D-aspartate were hydrolyzed, but N-carbobenzoyl-D-aspartate, N-acetyl-L-aspartate, and N-acetyl-D-glutamate were not substrates. The enzyme was inhibited by both divalent cations (Hg2+, Ni2+, Cu2+) and thiol reagents (N-ethylmaleimide, iodoacetic acid, dithiothreitol, and p-chloromercuribenzoic acid). The N-terminal amino acid sequence and amino acid composition were analyzed.  相似文献   

2.
An NADP-specific glutamate dehydrogenase [L-glutamate: NADP+ oxidoreductase (deaminating), EC 1.4.1.4] from alkaliphilic Bacillus sp. KSM-635 was purified 5840-fold to homogeneity by a several-step procedure involving Red-Toyopearl affinity chromatography. The native protein, with an isoelectric point of pH 4.87, had a molecular mass of approximately 315 kDa consisting of six identical summits each with a molecular mass of 52 kDa. The pH optima for the aminating and deaminating reactions were 7.5 and 8.5, respectively. The optimum temperature was around 60°C for both. The purified enzyme had a specific activity of 416units/mg protein for the aminating reaction, being over 20-fold greater than that for deaminating reaction, at the respective pH optima and at 30°C. The enzyme was specific for NADPH (Km 44 μM), 2-oxoglutarate (Km 3.13 mM), NADP+ (Km 29 μM), and L-glutamate (Km 6.06 mM). The Km for NH4Cl was 5.96 mM. The enzyme could be stored without appreciable loss of enzyme activity at 5°C for half a year in phosphate buffer (pH 7.0) containing 2 mM 2-mercaptoethanol, although the enzyme activity was abolished within 20 h by freezing at ?20°C.  相似文献   

3.
The substrate specificity of sugar beet α-giucosidase was investigated. The enzyme showed a relatively wide specificity upon various substrates, having α-1,2-, α-1,3-, α-1,4- and α-l,6-glucosidic linkages.

The relative hydrolysis velocity for maltose (G2), nigerose (N), kojibiose (K), isomaltose (I), panose (P), phenyl-a-maltoside (?M) and soluble starch (SS) was estimated to be 100:130: 10.7: 22.6: 54.6: 55.8: 120 in this order; that for malto-triose (G3), -tetraose (G4), -pentaose (G5), -hexaose (G6), -heptaose (G7), -octaose (G8), amyloses (G13) and (G17), 91: 91: 91: 91: 80: 57: 75: 73. The Km values for N, K, I, P, and SS were 16.7 mM, 1.25 mM, 10.8 mM, 8.00 mM, 4.12 mM and 1.90 mg/ml, respectively; that for G2, G3, G4, G5, G6, G7, G8, G13 and G17 were 20.0 mM, 3.67 mM, 2.34 mM, 0,64 mM, 0.42 mM, 0.32 mM, 0.23 mM, 0.36 mM and 0.26 mM, respectively.

The enzyme, though showed higher affinity and activity toward soluble starch than toward maltose, was considered essentially to be an α-glucosidase.  相似文献   

4.
Single cells were prepared from mesocarp tissue of ripe persimmon (Diospyros kaki cv. Fuyu) fruits, and inter- or intracellular localization of acid invertase (AI, EC 3.2.1.26) was studied. AI was localized in the intercellular fraction (cell wall fraction). AI was isolated and purified from the cell wall fraction of ripe persimmon fruits by column chromatography on SE-53 cellulose and Toyopearl HW 55F. The specific activity of purified AI was 570 units per mg protein at 30°C. The molecular mass of AI was estimated to be 44 kDa by gel filtration over Sephacryl S-200 and 70 kDa by SDS–PAGE. The optimum pH of the activity for sucrose was 4.25. The purified enzyme hydrolyzed sucrose and raffinose but not melibiose. The enzyme had a Km of 3.2 mM for sucrose and a Km of 2.6 mM for raffinose. Silver nitrate (5 μM), HgCI2 (2 μM), p-chloromercuribenzoate (100mM), pyridoxamine (10mM), and pyridoxine (2.5mM) inhibited AI activity by 95, 85, 100, 41, and 300%, respectively.  相似文献   

5.
D-Galacturonic acid reductase, a key enzyme in ascorbate biosynthesis, was purified to homogeneity from Euglena gracilis. The enzyme was a monomer with a molecular mass of 38–39 kDa, as judged by SDS–PAGE and gel filtration. Apparently it utilized NADPH with a Km value of 62.5±4.5 μM and uronic acids, such as D-galacturonic acid (Km=3.79±0.5 mM) and D-glucuronic acid (Km=4.67±0.6 mM). It failed to catalyze the reverse reaction with L-galactonic acid and NADP+. The optimal pH for the reduction of D-galacturonic acid was 7.2. The enzyme was activated 45.6% by 0.1 mM H2O2, suggesting that enzyme activity is regulated by cellular redox status. No feedback regulation of the enzyme activity by L-galactono-1,4-lactone or ascorbate was observed. N-terminal amino acid sequence analysis revealed that the enzyme is closely related to the malate dehydrogenase families.  相似文献   

6.
A major laccase isozyme (Lac 1) was isolated from the culture fluid of an edible basidiomycetous mushroom, Grifola frondosa. Lac 1 was revealed to be a monomeric protein with a molecular mass of 71 kDa. The N-terminal amino acid sequence of Lac 1 was highly similar to those of laccases of some other white-rot basidiomycetes. Lac 1 showed the typical absorption spectrum of a copper-containing enzyme. The enzyme was stable in a wide pH range (4.0 to 10.0), and lost no activity up to 60 °C for 60 min. The optimal pH of the enzyme activity varied among substrates. The K m values of Lac 1 toward 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), 2,6-dimethoxyphenol, guaiacol, catechol, and 3,4-dihydroxy-L-phenylalanine were 0.0137 mM, 0.608 mM, 0.531 mM, 2.51 mM, and 0.149 mM respectively. Lac 1 activity was remarkably inhibited by the chloride ion, in a reversible manner. Lac 1 activity was also inhibited by thiol compounds.  相似文献   

7.
The theanine (THE: γ-glutamylethylamide) content and the growth rate of cultured cells of tea (Camellia sinensis L.) were increased greatly to 22.3%, in dry wt. with a medium containing 60 mM nitrate and 25 mM ethylamine as a nitrogen source. The optimum concentrations of nitrate, Mg2+, and K+ for the growth and formation of THE in suspension cells were 40mM, 3mM, and 104mM, respectively. The yield of THE accumulated in the cultured cells with the medium modified for THE formation was increased greatly due to a great increase of the growth rate.  相似文献   

8.
β-N-Acetyl-D-hexosaminidase was isolated from the mid-gut gland of Patinopecten yessoensis. The enzyme was purifted by making an acetone-dried preparation of the mid-gut gland, extracting with 50 mM citrate-phosphate buffer (pH 4.0) (about 13% of the extracted proteins was β-N-acetyl-D-hexosaminidase), ammonium sulfate fractionation, and column chromatographies on CM-Sepharose and DEAE-Sepharose. The purifted β-N-acetyl-D-hexosaminidase was homogeneous on SDS–PAGE, and sufficiently free from other exo-type glycosidases. The molecular weight was 56,000 by SDS–PAGE. The enzyme hydrolyzed both p-nitrophenyl β-N-acetyl-D-glucosaminide and p-nitrophenyl β-N-acetyl-D-galactosaminide. For p-nitrophenyl β-N-acetyl-D-glucosaminide, the pH optimum was 3.7, the optimum temperature was 45°C, and the Km was 0.24 mM. For p-nitrophenyl β-N-acetyl-D-galactosaminide, these were pH 3.4, 45°C, and 0.15 mM, respectively. The enzyme liberated non-reducing terminal β-Iinked N-acetyl-D-glucosamine or N-acetyl-D-galactosamine from various 2-aminopyridyl derivatives of oligosaccharides of N-glycan or glycolipid type except of GM2-tetrasaccharide. As the enzyme was stable around pH 3.5–5.5, it may be useful for long time reactions around the optimum pH.  相似文献   

9.
Chlorophyllase from a diatom alga (Phaeodactylum tricornutum) was obtained and the partially purified extract has been further purified using preparative isoelectric focusing on a Rotofor cell. Three fractions, FI, FII, and FIII, were separated from the Rotofor cell and salt and ampholytes were removed to give fractions FI′, FII′, and FIII′, respectively. Enzyme fractions FI′, FII′, and FIII′, respectively. Enzyme fractions FI′, FII′, and FIII′ showed specific activities of 15.2 × 10?4, 226.7 ×10?4 and 33.8 × 10?4 µmol/mg protein/min, respectively. Most of the enzyme activity (84%) was in fraction FII′. The optimum pH for chlorophyllase activity was 8.0 for FI′ and 8.5 for both FII′ and FIII′. Apparent Km values for enzyme fractions FI′, FII′, and FIII′ were 2.1nM, 2.3nM, and 2.0 nM, respectively. Enzyme fractions FII′ and FIII′ showed higher chlorophyllase activity towards the partially purified chlorophyll when it was compared to that with the crude chlorophyll as well as with both chlorophylls a and b. However, the enzyme fraction FI′ had higher activity towards the crude chlorophyll when it was compared to that with both chlorophylls a and b, but with a preference for chlorophyll a over chlorophyll b. The inhibitory effect of diisopropyl flurophosphate (DIFP) on chlorophyllase activity demonstrates a noncompetitive inhibitor kinetics with Ki values of 1.29mM, 2.14mM, and 0.71mM for FI′. FII′, and FIII′, respectively.  相似文献   

10.
The cepA putative gene encoding a cellobiose phosphorylase of Thermotoga maritima MSB8 was cloned, expressed in Escherichia coli BL21-codonplus-RIL and characterized in detail. The maximal enzyme activity was observed at pH 6.2 and 80°C. The energy of activation was 74 kJ/mol. The enzyme was stable for 30 min at 70°C in the pH range of 6-8. The enzyme phosphorolyzed cellobiose in an random-ordered bi bi mechanism with the random binding of cellobiose and phosphate followed by the ordered release of D-glucose and α-D-glucose-1-phosphate. The K m for cellobiose and phosphate were 0.29 and 0.15 mM respectively, and the k cat was 5.4 s-1. In the synthetic reaction, D-glucose, D-mannose, 2-deoxy-D-glucose, D-glucosamine, D-xylose, and 6-deoxy-D-glucose were found to act as glucosyl acceptors. Methyl-β-D-glucoside also acted as a substrate for the enzyme and is reported here for the first time as a substrate for cellobiose phosphorylases. D-Xylose had the highest (40 s-1) k cat followed by 6-deoxy-D-glucose (17 s-1) and 2-deoxy-D-glucose (16 s-1). The natural substrate, D-glucose with the k cat of 8.0 s-1 had the highest (1.1×104 M-1 s-1) k cat/K m compared with other glucosyl acceptors. D-Glucose, a substrate of cellobiose phosphorylase, acted as a competitive inhibitor of the other substrate, α-D-glucose-1-phosphate, at higher concentrations.  相似文献   

11.
We identified two compounds that demonstrated 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity from cultures of Lactobacillus plantarum. Spectroscopic analyses proved these compounds to be L-3-(4-hydroxyphenyl) lactic acid (HPLA) and L-indole-3-lactic acid (ILA). The respective EC50 values for HPLA and ILA were 36.6 ± 4.3 mM and 13.4 ± 1.0 mM.  相似文献   

12.
L-Arabinose isomerase (L-arabinose ketol-isomerase, EC 5.3.1.4) was demonstrated from the L-arabinose-grown cells of Streptomyces sp. which was isolated from sea water. The enzyme was purified by MnCl2 treatment, fractionation by polyethylene glycol and by column chromatographies on Sephadex G-150 and DEAE-cellulose. The purified enzyme was specific only for L-arabinose and the Michaelis constant for L-arabinose was 40 mM at pH 7.5. Manganese or cobalt ions were effective for the enzyme activity after dialysis against EDTA. The enzyme activity was inhibited competitively by L-arabitoI, ribitol and xylitol, of which inhibition constants were 1.1, 1.0, and 15 mM, respectively.  相似文献   

13.
Arthrobacter sp. Q36 produces a novel enzyme, maltooligosyl trehalose synthase, which catalyzes the conversion of maltooligosaccharide into the non-reducing saccharide, maltooligosyl trehalose (α-maltooligosyl α-D-glucoside) by intramolecular transglycosylation. The enzyme was purified from a cell-free extract to an electrophoretically homogeneous state by successive column chromatography on Sepabeads FP-DA13, DEAE-Sephadex A-50, Ultrogel AcA44, and Butyl-Toyopearl 650M. The enzyme was specific for maltooligosaccharides except maltose, and catalyzed the conversion to form maltooligosyl trehalose. The Km of the enzyme for maltotetraose, maltopentaose, maltohexaose, and maltoheptaose were 22.9mM, 8.7mM, 1.4mM, and 0.9mM, respectively. The enzyme had a molecular mass of 81,000 by SDS-polyacrylamide gel electrophoresis and a pI of 4.1 by gel isoelectrofocusing. The N-terminal and C-terminal amino acids of the enzyme were methionine and serine, respectively. The enzyme showed the highest activity at pH 7.0 and 40°C, and was stable from pH 6.0 to 9.5 and up to 40°C. The enzyme activity was inhibited by Hg2+ and Cu2+.  相似文献   

14.
The substrate specificity of rice α-glucosidase II was studied. The enzyme was active especially on nigerose, phenyl-α-maltoside and maltooligosaccharides. The actions on isomaltose and phenyl-α-glucoside were weak, and on sucrose and methyl-α-glucoside, negligible. The α-glucans, such as soluble starch, amylopectin, β-limit dextrin, glycogen and amylose, were also hydrolyzed.

The ratio of the maximum velocities for hydrolyses of maltose (G2), nigerose (N), kojibiose (K), isomaltose (I), phenyl-α-maltoside (?M) and soluble starch (SS) was estimated to be 100: 94.4: 14.2: 7.1: 89.5: 103.1 in this order, and that for hydrolyses of malto-triose (G3), -tetraose (G4), -pentaose (G5), -hexaose (G6), -heptaose (G7), -octaose (G8), and amyloses ( and ), 113: 113: 113: 106: 113: 100: 106: 106. The Km values for N, K, I, ?M and SS were 2.4 mm, 0.58 mm, 20 mm, 1.6 mm and 5.0 mg/ml, respectively; those for G2, G3, G4, G5, G6, G7, G8, and , 2.4 mm, 2.2 mm, 2.1 mm, 1.5 mm, 1.0 mm, 1.1 mm, 0.95 mm, 1.5 mm and 1.1 mm.

Rice α-glucosidase II is considered an enzyme with a preferential activity on maltooligosaccharides.  相似文献   

15.
The α-methylserine aldolase gene from Variovorax paradoxus strains AJ110406, NBRC15149, and NBRC15150 was cloned and expressed in Escherichia coli. Formaldehyde release activity from α-methyl-L-serine was detected in the cell-free extract of E.coli expressing the gene from three strains. The recombinant enzyme from V. paradoxus NBRC15150 was purified. The V max and K m of the enzyme for the formaldehyde release reaction from α-methyl-L-serine were 1.89 μmol min?1 mg?1 and 1.2 mM respectively. The enzyme was also capable of catalyzing the synthesis of α-methyl-L-serine and α-ethyl-L-serine from L-alanine and L-2-aminobutyric acid respectively, accompanied by hydroxymethyl transfer from formaldehyde. The purified enzyme also catalyzed alanine racemization. It contained 1 mole of pyridoxal 5′-phosphate per mol of the enzyme subunit, and exhibited a specific spectral peak at 429 nm. With L-alanine and L-2-aminobutyric acid as substrates, the specific peak, assumed to be a result of the formation of a quinonoid intermediate, increased at 498 nm and 500 nm respectively.  相似文献   

16.
β-N-Acetvlhexosaminidase (EC 3.2.1.52) was purified from the liver of a prawn, Penaeus japonicus, by ammonium sulfate fractionation and chromatography with Sephadex G-100, hydroxylapatite, DEAE-Cellulofine, and Cellulofine GCL-2000-m. The purified enzyme showed a single band keeping the potential activity on both native PAGE and SDS–PAGE. The apparent molecular weight was 64,000 and 110,000 by SDS–PAGE and gel filtration, respectively. The pI was less than 3.2 by chromatofocusing. The aminoterminal amino acid sequence was NH2-Thr-Leu-Pro-Pro-Pro-Trp-Gly-Trp-Ala-?-Asp-Gln-Gly-VaI-?-Val-Lys-Gly-Glu-Pro-. The optimum pH and temperature were 5.0 to 5.5 and 50°C, respectively. The enzyme was stable from pH 4 to 11, and below 55°C. It was 39% inhibited by 10mM HgCl2.

Steady-state kinetic analysis was done with the purified enzyme using N-acetylchitooligosaccharides (GlcNAcn, n = 2 to 6) and p-nitrophenyl N-acetylchitooligosaccharides (pNp-β-GlcNAcn, n= 1 to 3) as the substrates. The enzyme hydrolyzed all of these substrates to release monomeric GlcNAc from the non-reducing end of the substrate. The parameters of Km and kcat at 25°C and pH 5.5 were 0.137 mM and 598s–1 for pNp-β-GlcNAc, 0.117 mM and 298s–1 for GlcNAc2, 0.055 mM and 96.4s–1 for GlcNAc3, 0.044 mM and 30.1 s–1 for GlcNAc4, 0.045 mM and 14.7 s–1 for GlcNAc5, and 0.047 mM and 8.3 s–1 for GlcNAc6, respectively. These results suggest that this β-N-acetylhexosaminidase is an exo-type hydrolytic enzyme involved in chitin degradation, and prefers the shorter substrates.  相似文献   

17.
Branched chain amino acid aminotransferase was partially purified from Pseudomonas sp. by ammonium sulfate fractionation, aminohexyl-agarose and Bio-Gel A-0.5 m column chromatography.

This enzyme showed different substrate specificity from those of other origins, namely lower reactivity for l-isoleucine and higher reactivity for l-methionine.

Km values at pH 8.0 were calculated to be 0.3 mm for l-leucine, 0.3 mm for α-ketoglutarate, 1.1 mm for α-ketoisocaproate and 3.2 mm for l-glutamate.

This enzyme was activated with β-mercaptoethanol, and this activated enzyme had different kinetic properties from unactivated enzyme, namely, Km values at pH 8.0 were calculated to be 1.2 mm for l-leucine, 0.3 mm for α-ketoglutarate.

Isocaproic acid which is the substrate analog of l-leucine was competitive inhibitor for pyridoxal form of unactivated and activated enzymes, and inhibitor constants were estimated to be 6 mm and 14 mm, respectively.  相似文献   

18.
Isolated hepatocytes are known to maintain their physiological functions for over a week when cultured on Matrigel, artificially reconstituted from basement membrane components. Although this culture technique has been frequently used in research on hepatocyte functions, there has been a limitation on its application for small scale experiments due to some technical problems. By using micro-culture plates with 96 round-bottom wells, we succeeded in coating the wells uniformly with Matrigel. When the cultured hepatocytes were treated with either 10 mM, 15 mM, or 20 mM of acetaminophen or 1 mM, 10 mM, or 20 mM of D-galactosamine, the viability of the hepatocytes became 91.1%, 75.3%, 64.7%, and 79.0%, 43.8%, 26.2% of the non-treated control at 48 hours, respectively. Fractionated extracts of Glycyrrhiza glabra L. and Schisandra chinensis Baillon inhibited the action of acetaminophen or D-galactosamine in this model. From these results, we concluded that the microculture system presented here is capable of maintaining the in vivo characteristics of hepatocytes and is suitable for the screening of hepatoprotective substances.  相似文献   

19.
The best inducers for D-aminoacylase from Alcaligenes xylosoxydans subsp. xylosoxydans A-6 (Alcaligenes A-6) were a poor substrate, N-acetyl-;-methyl-D-leucine, and an inhibitor, N-acetyl-D-alloisoleucine. The enzyme has been homogeneously purified. The molecular weight of the native enzyme was estimated to be 58,000 by gel filtration. A subunit molecular weight of 52,000 was measured by SD8–PAGE, indicating that the native protein is a monomer. The isoelectric point was 5.2. The enzyme was specific to the D-isomer and hydrolyzed N-acetyl derivatives of D-leucine, D-phenylalanine, D-norleucine, D-methionine, and D-valine, and also N-formyl, N-butyryl, and N-propionyl derivatives of D-leucine. The Km for N-acetyl-D-leucine was 9.8mM. The optimum pH and temperature were 7.0 and 50°C, respectively. The stabilities of pH and temperature were 8.1 and 40°C. D-Aminoacylases from three species of the genus Alcaligenes differ in inducer and substrate specificities, but are similar with respect to molecular weight and N-terminal amino acid sequence.  相似文献   

20.
An aspartic protease that is significantly produced by baculovirus-infected Spodoptera frugiperda Sf9 insect cells was purified to homogeneity from a growth medium. To monitor aspartic protease activity, an internally quenched fluoresce (IQF) substrate specific to cathepsin D was used. The purified aspartic protease showed a single protein band on SDS–PAGE with an apparent molecular mass of 40 kDa. The N-terminal amino acid sequence of the enzyme had a high homology to a Bombyx mori aspartic protease. The enzyme showed greatest affinity for the IQF substrate at pH 3.0 with a K m of 0.85 μM. The k cat and k cat?K m values were 13 s?1 and 15 s?1 μM?1 respectively. Pepstatin A proved to be a potent competitive inhibitor with inhibitor constant, K i, of 25 pM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号