首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells of Lactobacillus plantarum ML11-11, an isolate from Fukuyama pot vinegar, and the yeast Saccharomyces cerevisiae formed significant mixed-species biofilms with concurrent inter-species co-aggregation. The co-aggregation did not occur with heated or proteinase K-treated ML11-11 cells, or in the presence of D-mannose, suggesting that surface proteins of ML11-11 and mannose-containing surface substance(s) of yeast were the predominant contributing factors. Sugar fatty acid ester inhibited mixed-species biofilm formation, but did not inhibit co-aggregation, suggesting that the cell-cell adhesion and cell-polystylene adhesion are controlled by different mechanisms. Microscopic observation and microflora analysis revealed that inter-species co-aggregation plays an important role in the formation of the mixed-species biofilm.  相似文献   

2.
Lactic acid bacteria (LAB) mutants deficient in inter-species co-aggregation with yeast were spontaneously derived from Lactobacillus plantarum ML11-11, a significant mixed-species biofilm former in static co-cultures with budding yeasts. These non-co-aggregative mutants also showed significant decreases in mixed-species biofilm formation. These results suggest the important role of co-aggregation between LAB and yeast in mixed-species biofilm formation. Cell surface proteins obtained by 5 M LiCl extraction from the wild-type cells and non-co-aggregative mutant cells were analyzed by SDS-PAGE. There was an obvious difference in protein profiles. The protein band at 30 kDa was present abundantly in the wild-type cell surface fraction but was significantly decreased in the mutant cells. This band assuredly corresponded to the LAB surface factors that contribute to co-aggregation with yeasts.  相似文献   

3.
Lactic acid bacteria (LAB) Lactobacillus plantarum ML11-11, an isolate from Fukuyama pot vinegar, and yeast Saccharomyces cerevisiae form significant mixed-species biofilm with direct cell-cell contact. Co-aggregation of L. plantarum ML11-11 and S. cerevisiae cells, mediated by the interaction between surface protein(s) on L. plantarum ML11-11 cells and surface mannan of S. cerevisiae cells, contributes significantly to mixed-species biofilm formation. In this study, co-aggregation activities of yeast mutants that were deleted of genes related to mannan biosynthesis were investigated to clarify the mannan structures essential for interaction with L. plantarum ML11-11. Among the 12 deletion mutants which had various incomplete mannan structures, only the mnn2 mutant lost the co-aggregation activity. In the mnn2 mutant, the gene coding the activity of attaching first branching mannose residue to mannan main chain is deleted and therefore the mnn2 mutant has unbranched mannan. From this result, it is clarified that the specific structure, consisted of mannan main chain to which are attached side chains containing one or more mannose residues, is critical for co-aggregation with L. plantarum ML11-11.  相似文献   

4.
ABSTRACT

The mixed-species biofilm of Lactobacillus plantarum ML11-11 (LAB) and yeast had a double-layered structure with the ground layer composed of LAB cells, and the upper layer composed of coaggregates of LAB and yeast cells. The ability of LAB to adhere to both, the solid surface and the yeast cells, enabled the formation and maintenance of the biofilm as an ecosystem for LAB and yeast.  相似文献   

5.
Mixed-species biofilm was remarkably formed in a static co-culture of Lactobacillus plantarum ML11-11 and Saccharomyces cerevisiae Y11-43 isolated from brewing samples of Fukuyama pot vinegar. Mixed-species biofilm is probably formed by direct cell-cell contact between ML11-11 and S. cerevisiae including Y11-43 and laboratory yeast strains. Scanning electron microscopic observation suggested that the mixed-species biofilm had a thick, bi-layer structure.  相似文献   

6.
Mixed-species biofilm was remarkably formed in a static co-culture of Lactobacillus plantarum ML11-11 and Saccharomyces cerevisiae Y11-43 isolated from brewing samples of Fukuyama pot vinegar. Mixed-species biofilm is probably formed by direct cell-cell contact between ML11-11 and S. cerevisiae including Y11-43 and laboratory yeast strains. Scanning electron microscopic observation suggested that the mixed-species biofilm had a thick, bi-layer structure.  相似文献   

7.
Candida albicans is the most notorious and the most widely studied yeast biofilm former. Design of experiments (DoE) showed that 10 mg/L zosteric acid sodium salt reduced C. albicans adhesion and the subsequent biofilm formation by at least 70%, on both hydrophilic and hydrophobic surfaces of 96-well plates. Indeed, biofilm imaging revealed the dramatic impact of zosteric acid sodium salt on biofilm thickness and morphology, due to the inability of the cells to form filamentous structures while remaining metabolically active. In the same way, 10 mg/L zosteric acid sodium salt inhibited C. albicans biofilm formation when added after the adhesion phase. Contrary to zosteric acid sodium salt, methyl zosterate did not affect yeast biofilm. In addition, zosteric acid sodium salt enhanced sensitivity to chlorhexidine, chlorine, hydrogen peroxide, and cis-2-decenoic acid, with a reduction of 0.5 to 8 log units. Preliminary in vitro studies using suitable primary cell based models revealed that zosteric acid sodium salt did not compromise the cellular activity, adhesion, proliferation or morphology of either the murine fibroblast line L929 or the human osteosarcoma line MG-63. Thus the use of zosteric acid sodium salt could provide a suitable, innovative, preventive, and integrative approach to preventing yeast biofilm formation.  相似文献   

8.
The yeast Saccharomyces cerevisiae is able to form complex multicellular structures called mats on low-density agar Petri plates. Mat formation strictly depends on Flo11p, a cell surface mannoprotein that mediates the adhesion of yeast cells to the agar surface. Here, we show that Swa2p, an auxilin ortholog required for clathrin-coated vesicle uncoating, is strictly required for biofilm formation. We show that the maturation and cellular levels of Flo11p are affected in Δswa2 cells, yet without compromising invasive growth. Both the TPR and J-domains of Swa2p, but not its clathrin-binding and ubiquitin-association motifs, are required for its function in Flo11p processing.  相似文献   

9.
This study was performed in order to characterize the relationship between adhesion and biofilm formation abilities of drinking water-isolated bacteria (Acinetobacter calcoaceticus, Burkholderia cepacia, Methylobacterium sp., Mycobacterium mucogenicum, Sphingomonas capsulata and Staphylococcus sp.). Adhesion was assessed by two distinct methods: thermodynamic prediction of adhesion potential by quantifying hydrophobicity and the free energy of adhesion; and by microtiter plate assays. Biofilms were developed in microtiter plates for 24, 48 and 72 h. Polystyrene (PS) was used as adhesion substratum. The tested bacteria had negative surface charge and were hydrophilic. PS had negative surface charge and was hydrophobic. The free energy of adhesion between the bacteria and PS was > 0 mJ/m2 (thermodynamic unfavorable adhesion). The thermodynamic approach was inappropriate for modelling adhesion of the tested drinking water bacteria, underestimating adhesion to PS. Only three (B. cepacia, Sph. capsulata and Staphylococcus sp.) of the six bacteria were non-adherent to PS. A. calcoaceticus, Methylobacterium sp. and M. mucogenicum were weakly adherent. This adhesion ability was correlated with the biofilm formation ability when comparing with the results of 24 h aged biofilms. Methylobacterium sp. and M. mucogenicum formed large biofilm amounts, regardless the biofilm age. Given time, all the bacteria formed biofilms; even those non-adherents produced large amounts of matured (72 h aged) biofilms. The overall results indicate that initial adhesion did not predict the ability of the tested drinking water-isolated bacteria to form a mature biofilm, suggesting that other events such as phenotypic and genetic switching during biofilm development and the production of extracellular polymeric substances (EPS), may play a significant role on biofilm formation and differentiation. This understanding of the relationship between adhesion and biofilm formation is important for the development of control strategies efficient in the early stages of biofilm development.  相似文献   

10.
Saccharomyces cerevisiae “flor” yeasts have the ability to form a buoyant biofilm at the air-liquid interface of wine. The formation of biofilm, also called velum, depends on FLO11 gene length and expression. FLO11 encodes a cell wall mucin-like glycoprotein with a highly O-glycosylated central domain and an N-terminal domain that mediates homotypic adhesion between cells. In the present study, we tested previously known antimicrobial peptides with different mechanisms of antimicrobial action for their effect on the viability and ability to form biofilm of S. cerevisiae flor strains. We found that PAF26, a synthetic tryptophan-rich cationic hexapeptide that belongs to the class of antimicrobial peptides with cell-penetrating properties, but not other antimicrobial peptides, enhanced biofilm formation without affecting cell viability in ethanol-rich medium. The PAF26 biofilm enhancement required a functional FLO11 but was not accompanied by increased FLO11 expression. Moreover, fluorescence microscopy and flow cytometry analyses showed that the PAF26 peptide binds flor yeast cells and that a flo11 gene knockout mutant lost the ability to bind PAF26 but not P113, a different cell-penetrating antifungal peptide, demonstrating that the FLO11 gene is selectively involved in the interaction of PAF26 with cells. Taken together, our data suggest that the cationic and hydrophobic PAF26 hexapeptide interacts with the hydrophobic and negatively charged cell wall, favoring Flo11p-mediated cell-to-cell adhesion and thus increasing biofilm biomass formation. The results are consistent with previous data that point to glycosylated mucin-like proteins at the fungal cell wall as potential interacting partners for antifungal peptides.  相似文献   

11.
Pseudomonas putida OUS82 biofilm dispersal was previously shown to be dependent on the gene PP0164 (here designated lapG). Sequence and structural analysis has suggested that the LapG geneproduct belongs to a family of cysteine proteinases that function in the modification of bacterial surface proteins. We provide evidence that LapG is involved in P. putida OUS82 biofilm dispersal through modification of the outer membrane‐associated protein LapA. While the P. putida lapG mutant formed more biofilm than the wild‐type, P. putida lapA and P. putida lapAG mutants displayed decreased surface adhesion and were deficient in subsequent biofilm formation, suggesting that LapG affects LapA, and that the LapA protein functions both as a surface adhesin and as a biofilm matrix component. Lowering of the intracellular c‐di‐GMP level via induction of an EAL domain protein led to dispersal of P. putida wild‐type biofilm but did not disperse P. putida lapG biofilm, indicating that LapG exerts its activity on LapA in response to a decrease in the intracellular c‐di‐GMP level. In addition, evidence is provided that associated to LapA a cellulase‐degradable exopolysaccharide is part of the P. putida biofilm matrix.  相似文献   

12.
We found that species combinations such as Lactobacillus casei subsp. rhamnosus IFO3831 and Saccharomyces cerevisiae Kyokai-10 can form a mixed-species biofilm in coculture. Moreover, the Kyokai-10 yeast strain can form a biofilm in monoculture in the presence of conditioned medium (CM) from L. casei IFO3831. The active substance(s) in bacterial CM is heat sensitive and has a molecular mass of between 3 and 5 kDa. In biofilms from cocultures or CM monocultures, yeast cells had a distinct morphology, with many hill-like protrusions on the cell surface.  相似文献   

13.
A defining characteristic of the suspected periodontal pathogen Fusobacterium nucleatum is its ability to adhere to a plethora of oral bacteria. This distinguishing feature is suggested to play an important role in oral biofilm formation and pathogenesis, with fusobacteria proposed to serve as central 'bridging organisms' in the architecture of the oral biofilm bringing together species which would not interact otherwise. Previous studies indicate that these bacterial interactions are mediated by galactose- or arginine-inhibitable adhesins although genetic evidence for the role and nature of these proposed adhesins remains elusive. To characterize these adhesins at the molecular level, the genetically transformable F. nucleatum strain ATCC 23726 was screened for adherence properties, and arginine-inhibitable adhesion was evident, while galactose-inhibitable adhesion was not detected. Six potential arginine-binding proteins were isolated from the membrane fraction of F. nucleatum ATCC 23726 and identified via mass spectroscopy as members of the outer membrane family of proteins in F. nucleatum . Inactivation of the genes encoding these six candidates for arginine-inhibitable adhesion and two additional homologues revealed that only a mutant derivative carrying an insertion in Fn1526 (now designated as radD ) demonstrated significantly decreased co-aggregation with representatives of the Gram-positive 'early oral colonizers'. Lack of the 350 kDa outer membrane protein encoded by radD resulted in the failure to form the extensive structured biofilm observed with the parent strain when grown in the presence of Streptococcus sanguinis ATCC 10556. These findings indicate that radD is responsible for arginine-inhibitable adherence of F. nucleatum and provides definitive molecular evidence that F. nucleatum adhesins play a vital role in inter-species adherence and multispecies biofilm formation.  相似文献   

14.
The formation of yeast biofilm on food industry equipment can lead to serious hygiene problems and economic losses due to food spoilage and equipment impairment. This study explored the ability of a sub-lethal concentration of the bulb extract of Muscari comosum to modulate adhesion of Candida albicans and subsequent biofilm development by this fungus. The HPLC profile of the ethanolic bulb extract showed phenolic constituents, which were found to undergo Folin-Ciocalteu reagent reduction. Prior to the adhesion tests, it was shown that up to 4000 mg l?1 of natural extract did not adversely affect fungal growth nor did it act as a carbon energy source for C. albicans. Mathematical models predicted that 4000 mg l?1 and 700 mg l?1 of bulb extract would cause more than 98% reduction in fungal coverage on abiotic surfaces, without killing the planktonic cells. When added to C. albicans biofilm, the natural extract was shown to induce the dispersion of sessile cells in a dose-dependent manner.  相似文献   

15.
In Candida albicans, alcohol metabolism is implicated in biofilm formation. The alcohol dehydrogenase gene (ADH1) is involved in the conversion of acetaldehyde to ethanol and reported to be downregulated during biofilm formation. C. albicans produces acetaldehyde under both in vivo and in vitro conditions. Mutations in ADH genes result in increased acetaldehyde production in vitro, but studies are lacking on the morphogenetic role(s) of acetaldehyde in C. albicans. We report here that acetaldehyde at a concentration of 7 mM was able to inhibit the conversion from yeast to hyphal forms induced by four standard inducers at 37°C. The hyphal inhibitory concentrations did not adversely affect the growth and viability of C. albicans cells. The same concentration of acetaldehyde also significantly inhibited biofilm development, and only adhered yeast cells were found. We hypothesize that acetaldehyde produced by C. albicans may exert a morphogenetic regulatory role influencing yeast-to-hypha conversion, biofilm formation, dissemination and establishment of infection.  相似文献   

16.
Taking into account that fructophilic lactic acid bacteria (FLAB) can play an important role in the health of honey bees and can be used as probiotics, phenotypic properties of probiotic interest of Lactobacillus kunkeei (12 strains) and Fructobacillus fructossus bacteria (2 strains), isolated from Apis mellifera gastrointestinal tract, have been studied. We have evaluated survival of tested FLAB in honey bee gut, their susceptibility to antibiotics (ampicillin, erythromycin, tylosin), cell surface hydrophobicity, auto-aggregation ability, co-aggregation with model pathogenic bacteria, biofilm formation capacity, and effect of studied FLAB, added to sucrose syrup bee diet, on longevity of honey bees. The tested FLAB exhibited good gastrointestinal tract tolerance and high antibiotic susceptibility, which are important criteria in the screening of probiotic candidates. It was also found that all FLAB studied have high cell surface hydrophobicity and fulfil next selection criterion for their use as probiotics. Symbionts of A. mellifera showed also auto- and co-aggregation capacities regarded as valuable features for biofilm formation and inhibition of pathogens adhesion to the bee gut cells. Biofilm-development ability is a desired characteristic of probiotic lactic acid bacteria. As indicated by quantitative crystal violet-stained microplate assay and confocal laser scanning microscopy imaging, all studied A. mellifera gut isolates exhibit a biofilm positive phenotype. Moreover, it was also documented, on honey bees kept in cages, that supplementation of A. mellifera sucrose diet with FLAB decreases mortality and improves significantly longevity of honey bees. Presented research showed that A. mellifera FLAB symbionts are good candidates for application as probiotics.  相似文献   

17.

Present study is intended to assess the probiotic properties of Bacillus spp. isolated from idli batter, a traditional fermented food of Southern India and Sri Lanka. A total of 32 isolates were screened for potential pathogenic behaviour through haemolysis assay, DNase activity and antibiotics sensitivity. Two of the isolates were found to be potentially safe and identified as Bacillus spp. These strains were characterized for in vitro probiotic attributes and antioxidant activity. Both the strains showed strong acid and bile tolerance, transit tolerance, lysozyme tolerance, cell surface hydrophobicity, auto-aggregation, co-aggregation, biofilm formation potential and adhesion to human colon adenocarcinoma (HT 29) cell line demonstrating potential probiotic ability. These strains also exhibited considerable cholesterol binding, thermostability, β-galactosidase production, proteolytic, amylolytic and lipolytic activity. Cell-free supernatant inhibited the biofilm formation by Pseudomonas aeruginosa (KT266804) to 90%. Intact cells showed significant DPPH (41%), hydroxyl (31%), radical scavenging activity and lipid peroxidation inhibition (20.38%), while cell-free extracts exhibited significant superoxide anion radical scavenging activity (16.25%). Results revealed that isolates could be potential probiotic candidate after further assessment of in vivo probiotic properties and safety evaluation and could be utilised as starter cultures in functional foods.

  相似文献   

18.
The Candida albicans Als adhesin Als5p has an amyloid-forming sequence that is required for aggregation and formation of model biofilms on polystyrene. Because amyloid formation can be triggered by force, we investigated whether laminar flow could activate amyloid formation and increase binding to surfaces. Shearing Saccharomyces cerevisiae cells expressing Als5p or C. albicans at 0.8 dyne/cm2 increased the quantity and strength of cell-to-surface and cell-to-cell binding compared to that at 0.02 dyne/cm2. Thioflavin T fluorescence showed that the laminar flow also induced adhesin aggregation into surface amyloid nanodomains in Als5p-expressing cells. Inhibitory concentrations of the amyloid dyes thioflavin S and Congo red or a sequence-specific anti-amyloid peptide decreased binding and biofilm formation under flow. Shear-induced binding also led to formation of robust biofilms. There was less shear-activated increase in adhesion, thioflavin fluorescence, and biofilm formation in cells expressing the amyloid-impaired V326N-substituted Als5p. Similarly, S. cerevisiae cells expressing Flo1p or Flo11p flocculins also showed shear-dependent binding, amyloid formation, biofilm formation, and inhibition by anti-amyloid compounds. Together, these results show that laminar flow activated amyloid formation and led to enhanced adhesion of yeast cells to surfaces and to biofilm formation.  相似文献   

19.
Candida albicans and Cutibacterium acnes are opportunistic pathogens that co-colonize the human body. They are involved in biofilm-related infections of implanted medical devices. The objective of this study was to evaluate the ability of these species to interact and form polymicrobial biofilms. SEM imaging and adhesion assays showed that C. acnes adhesion to C. albicans did not have a preference for a specific morphological state of C. albicans; bacteria adhered to both hyphal and yeast forms of C. albicans. C. albicans did not influence growth of C. acnes under anaerobic growth conditions, however under aerobic growth condition, C. albicans enhanced early C. acnes biofilm formation. This favorable impact of C. albicans was not mediated by secreted compounds accumulating in the medium, but required the presence of metabolically active C. albicans. The ability of these microorganisms to interact together could modulate the physiopathology of infections.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号