首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
l-ribose isomerase (L-RI) from Cellulomonas parahominis MB426 can convert l-psicose and d-tagatose to l-allose and d-talose, respectively. Partially purified recombinant L-RI from Escherichia coli JM109 was immobilized on DIAION HPA25L resin and then utilized to produce l-allose and d-talose. Conversion reaction was performed with the reaction mixture containing 10% l-psicose or d-tagatose and immobilized L-RI at 40 °C. At equilibrium state, the yield of l-allose and d-talose was 35.0% and 13.0%, respectively. Immobilized enzyme could convert l-psicose to l-allose without remarkable decrease in the enzyme activity over 7 times use and d-tagatose to d-talose over 37 times use. After separation and concentration, the mixture solution of l-allose and d-talose was concentrated up to 70% and crystallized by keeping at 4 °C. l-Allose and d-talose crystals were collected from the syrup by filtration. The final yield was 23.0% l-allose and 7.30% d-talose that were obtained from l-psicose and d-tagatose, respectively.  相似文献   

2.
The interaction of protein with lipid in wheat gluten has been studied by electron spin resonance (ESR). The gluten in the flour suspension was spin-labeled with a fatty acid spin label (N-oxyl-4,4'-dimethyloxazolidine derivative of 5-ketostearic acid) and washed out from the flour. The ESR spectra of the spin label incorporated in gluten exhibited clearly separated parallel and perpendicular hyperfine splittings. The orientation of the gluten lipid and its fluidity showed temperature dependence. Phase transition was observed at 25°C. Compared with gluten, vesicles of the lipids extracted from flour were found to be in a less oriented, highly fluid state, and with much lower activation energy for rotational viscosity, while the reconstituted gluten, which was prepared by mixing purified gluten protein and the extracted lipids, had a lipid environment similar to that of gluten. The results indicate that the lipid was immobilized in the gluten matrix by strong interaction with protein.  相似文献   

3.
ABSTRACT

An N-lauroyl-l-phenylalanine-producing bacterium, identified as Burkholderia sp. strain LP5_18B, was isolated from a soil sample. The enzyme was purified from the cell-free extract of the strain and shown to catalyze degradation and synthesis activities toward various N-acyl-amino acids. N-lauroyl-l-phenylalanine and N-lauroyl-l-arginine were obtained with especially high yields (51% and 89%, respectively) from lauric acid and l-phenylalanine or l-arginine by the purified enzyme in an aqueous system. The gene encoding the novel aminoacylase was cloned from Burkholderia sp. strain LP5_18B and expressed in Escherichia coli. The gene contains an open reading frame of 1,323 nucleotides. The deduced protein sequence encoded by the gene has approximately 80% amino acid identity to several hydratase of Burkholderia. The addition of zinc sulfate increased the aminoacylase activity of the recombinant E. coli strain.  相似文献   

4.
The protective effect of dietary l-glutamine against the hepatotoxic action of d-galactosamine (GalN) was investigated by model experiments with rats. Rats fed with 20% casein diets containing 10% free amino acids were injected with GalN, and the serum aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase activities and the hepatic glycogen content were assayed 20 hours after the injection. These enzyme activities in the group fed with the 10% l-glutamine diet for 8 days were lower than those in the groups fed with the control, 10% l-glutamic acid and 10% l-alanine diets for 8 days. The more prolonged the feeding period with the 10% l-glutamine diet was, the more the serum activity levels of such enzymes were decreased. Although neomycin also lowered these enzyme activities, its simultaneous ingestion with neomycin did not show any additive or synergistic effect. The hepatic glycogen content in the 10% glutamine group still remained high after the GalN treatment. It is therefore assumed that the effectiveness of glutamine intake would have been mediated by glycogen metabolism rather than by uridine metabolism.  相似文献   

5.
An aminoacylase, inducibly formed in Bacillus thermoglucosidius grown with a synthetic compound, acetamidocinnamate, was used for enzymatic synthesis of l-phenylalanine from chloroacetamido-cinnamate. The reaction system consisted of the hydrolysis of chloroacetamidocinnamate to phenylpyruvate by aminoacylase and the reductive amination of phenylpyruvate to l-phenylalanine by phenylalanine dehydrogenase. The coenzyme NADH consumed was regenerated by a coupled reaction with formate dehydrogenase. Under optimum conditions for l-phenylalanine production, more than 98% of the initially added chloroacetamidocinnamate was converted effectively to l-phenylalanine without appreciable decomposition or racemization.  相似文献   

6.
A species of rice bran lipase (lipase II) was purified by ammonium sulfate precipitation, followed by successive chromatographies on DEAE-cellulose, Sephadex G–75 and CH-Sephadex C–50. Both polyacrylamide disc electrophoresis and ultracentrifugation demonstrated that the enzyme protein is homogeneous. The isoelectric point of the enzyme was 9.10 by ampholine electrophoresis. The sedimentation coefficient of the enzyme was evaluated to be 2.60 S, and the molecular weight to be 33,300 according to Archbald’s method. The enzyme showed the optimum pH between 7.5 and 8.0, and the optimum temperature at about 27°C. It was stable over the pH range from 5 to 9.5 and below 30°C. In substrate specificity, the enzyme exhibited a high specificity toward triglycerides having short-carbon chain fatty acids, although it was capable of hydrolyzing the ester bonds in the rice and olive oil.  相似文献   

7.
2-O-α-d-glucopyranosyl-l-ascorbic acid (AA-2G) is one of the most important l-ascorbic acid derivatives because of its resistance to reduction and oxidation and its easy degradation by α-glucosidase to release l-ascorbic acid and glucose. Thus, AA-2G has commercial uses in food, medicines and cosmetics. This article presents a review of recent studies on the enzymatic production of AA-2G using cyclodextrin glycosyltransferase. Reaction mechanisms with different donor substrates are discussed. Protein engineering, physical and biological studies of cyclodextrin glycosyltransferase are introduced from the viewpoint of effective AA-2G production. Future prospects for the production of AA-2G using cyclodextrin glycosyltransferase are reviewed.  相似文献   

8.
l-asparaginase (l-asparagine amino hydrolase, E.C.3.5.1.1) is an enzyme clinically accepted as an antitumor agent to treat acute lymphoblastic leukemia and lymphosarcoma. It catalyzes l-asparagine (Asn) hydrolysis to l-aspartate and ammonia, and Asn effective depletion results in cytotoxicity to leukemic cells. Microbial l-asparaginase (ASNase) production has attracted considerable attention owing to its cost effectiveness and eco-friendliness. The focus of this review is to provide a thorough review on microbial ASNase production, with special emphasis to microbial producers, conditions of enzyme production, protein engineering, downstream processes, biochemical characteristics, enzyme stability, bioavailability, toxicity and allergy potential. Some issues are also highlighted that will have to be addressed to achieve better therapeutic results and less side effects of ASNase use in cancer treatment: (a) search for new sources of this enzyme to increase its availability as a drug; (b) production of new ASNases with improved pharmacodynamics, pharmacokinetics and toxicological profiles, and (c) improvement of ASNase production by recombinant microorganisms. In this regard, rational protein engineering, directed mutagenesis, metabolic flux analysis and optimization of purification protocols are expected to play a paramount role in the near future.  相似文献   

9.
Oxidation of l-serine and l-threonine by a silver(III) complex anion, [Ag(HIO(6))(2)](5-), has been studied in aqueous alkaline medium. The oxidation products of the amino acids have been identified as ammonia, glyoxylic acid and aldehyde (formaldehyde for serine and acetaldehyde for threonine). Kinetics of the oxidation reactions has been followed by the conventional spectrophotometry in the temperature range of 20.0-35.0 degrees C and the reactions display an overall second-order behavior: first-order with respect to both Ag(III) and the amino acids. Analysis of influences of [OH(-)] and [periodate] on the second-order rate constants k' reveals an empirical rate expression: k(')=(k(a)+k(b)[OH(-)])K(1)/([H(2)IO(6)(3-)](e)+K(1)), where [H(2)IO(6)(3-)](e) is equilibrium concentration of periodate, and where k(a)=6.1+/-0.5M(-1)s(-1), k(b)=264+/-6M(-2)s(-1), and K(1)=(6.5+/-1.3)x10(-4)M for serine and k(a)=12.6+/-1.7M(-1)s(-1), k(b)=(5.5+/-0.2)x10(2)M(-2)s(-1), and K(1)=(6.2+/-1.5)x10(-4)M for threonine at 25.0 degrees C and ionic strength of 0.30M. Activation parameters associated with k(a) and k(b) have also been derived. A reaction mechanism is proposed to involve two pre-equilibria, leading to formation of an Ag(III)-periodato-amino acid ternary complex. The ternary complex undergoes a two-electron transfer from the coordinated amino acid to the metal center via two parallel pathways: one pathway is spontaneous and the other is assisted by a hydroxide ion. Potential applications of the Ag(III) complex as a reagent for modifications of peptides and proteins are implicated.  相似文献   

10.
11.
We investigated the effects of combining 1 g of l-citrulline and 1 g of l-arginine as oral supplementation on plasma l-arginine levels in healthy males. Oral l-citrulline plus l-arginine supplementation more efficiently increased plasma l-arginine levels than 2 g of l-citrulline or l-arginine, suggesting that oral l-citrulline and l-arginine increase plasma l-arginine levels more effectively in humans when combined.  相似文献   

12.
Sulfur-containing amino acids (L-cysteine or L-cystine) were reacted with D-glucose or pyruvaldehyde at various temperatures and submitted to flavor evaluation. The nuance of the aroma was changed with temperature, and the most acceptable aroma (Japanese rice cracker with sesame-like) was produced at 160°C in all the samples. Volatile compounds produced at 160°C were investigated by gas chromatography and GC–MS coupling. Many compounds such as thiazoles and thiophenes found in the volatiles of some foodstuffs were identified.  相似文献   

13.
The transport of l-leucine, l-phenylalanine and l-alanine by the perfused lactating rat mammary gland has been examined using a rapid, paired-tracer dilution technique. The clearances of all three amino acids by the mammary gland consisted of a rising phase followed by a rapid fall-off, respectively, reflecting influx and efflux of the radiotracers. The peak clearance of l-leucine was inhibited by BCH (65%) and d-leucine (58%) but not by l-proline. The inhibition of l-leucine clearance by BCH and d-leucine was not additive. l-leucine inhibited the peak clearance of radiolabelled l-leucine by 78%. BCH also inhibited the peak clearance of l-phenylalanine (66%) and l-alanine (33%) by the perfused mammary gland. Lactating rat mammary tissue was found to express both LAT1 and LAT2 mRNA. The results suggest that system L is situated in the basolateral aspect of the lactating rat mammary epithelium and thus probably plays a central role in neutral amino acid uptake from blood. The finding that l-alanine uptake by the gland was inhibited by BCH suggests that LAT2 may make a significant contribution to neutral amino acid uptake by the mammary epithelium.  相似文献   

14.
p-Nitrophenyl 65-O-β-D-galactopyraosyl-α-maltopentaoside (L6G5P) was synthesized by the sequential use of the transglycosylation and hydrolytic action of β-D-galactosidase from Bacillus circulans. The enzyme produced L6G5P (at a yield of 8.0% based on the amount of p-nitrophenyl α-maltopentaoside added) from lactose as the donor and p-nitrophenyl α-maltopentaoside as the acceptor. The frequency at which of human pancreatic α-amylase and salivary α-amylase catalyzed the cleavage of glycosidic linkages in L6G5P was calculated by analysis of the digests by high-pressure liquid chromatography. The modes of action of the two isozymes differed. Both hydrolyzed L6G5P and produced p-nitrophenyl α-maltoside and p-nitrophenyl α-D-glucopyranoside, but human pancreatic α-amylase produced more of the latter than human salivary α-amylase. Thus, L6G5P could be used to assay of the two enzymes differentially in serum.  相似文献   

15.
L-Tartrate in wines and grapes was enzymatically quantified by using the secondary activity of D-malate dehydrogenase (D-MDH). NADH formed by the D-MDH reaction was monitored spectrophotometrically. Under the optimal conditions, L-tartrate (a 1.0 mM sample solution) was fully oxidized by D-MDH in 30 min. A linear relationship was obtained between the absorbance difference and the L-tartrate concentration in the range of a 0.02-1.0 mM sample solution with a correlation coefficient of 0.9991. The relative standard deviation from ten measurements was 1.71% at the 1.0 mM sample solution level. The proposed method was compared with HPLC, and the values determined by both methods were in good agreement.  相似文献   

16.
Three Lactobacillus casei bacteriophages, LC-Nu, PL-1, and ?FSW, were compared. Phage LC-Nu, which has not been previously characterized, originated from a local cheese plant in Finland. Phages PL-1 and ?FSW (isolated in Japan) represent the most thoroughly studied L.casei phages so far. All three phages had similar morphotypes, but still had different patterns of structural proteins, as analyzed by SDS-PAGE. The phages differed also in types of genome organization: LC-Nu and PL-1 had cohesive ends in their DNAs, and the DNA of ?FSW was circularly permuted. The initiation site and orientation of packaging of ?FSW DNA were identified. The homologies between the phage genomes were analyzed by Southern hybridization. About one-third of each phage gem me was highly homologous with other phages (homology over 85%), and two-thirds were slightly homologous (homology between 65% and 76%). DNAs from five industrial L. casei strains were also tested for homology with phage LC-Nu DNA. Phage LC-Nu related sequences were present in all the L. casei strains tested.  相似文献   

17.
Objective: Elevated levels of arginine derivatives in the NO pathway, such as asymmetric dimethylarginine (ADMA), are related to disease severity and reduced exercise capacity in heart failure (HF). We investigated the influence of exercise intervention on these parameters and on L-arginine (L-Arg) and L-homoarginine (L-hArg) in HF with preserved ejection fraction (HFpEF) patients.

Material and methods: Sixty-two patients (65?±?6 years) were included in this analysis and randomized to supervised endurance/resistance training (ET) or to usual care (UC). EDTA-plasma was analysed for NO metabolites.

Results: There were baseline associations for adjusted values of maximum workload with ADMA (r=??0.322, p?=?0.028) and L-Arg/ADMA ratio (r?=?0.331, p?=?0.015), and for the 6-min walk test (6MWT) with ADMA (r=??0.314, p?=?0.024) and L-Arg/ADMA ratio (r?=?0.346, p?=?0.015). No significant differences between UC and ET changes of NO parameters were observed at 3-month follow-up. Higher L-hArg levels were associated with a greater improvement in peak oxygen uptake (peak O2) at follow-up: 3.4?±?2.8 vs. 1.1?±?2.9?mL/min/kg (p?=?0.005).

Conclusions: Exercise intervention did not influence NO parameters in HFpEF patients, but L-hArg was related to change in peak O2.  相似文献   

18.
19.
l-Xylulose was used as a raw material for the production of l-xylose with a recombinantly produced Escherichia colil-fucose isomerase as the catalyst. The enzyme had a very alkaline pH optimum (over 10.5) and displayed Michaelis-Menten kinetics for l-xylulose with a Km of 41 mM and a Vmax of 0.23 μmol/(mg min). The half-lives determined for the enzyme at 35 °C and at 45 °C were 6 h 50 min and 1 h 31 min, respectively. The reaction equilibrium between l-xylulose and l-xylose was 15:85 at 35 °C and thus favored the formation of l-xylose. Contrary to the l-rhamnose isomerase catalyzed reaction described previously [14]l-lyxose was not detected in the reaction mixture with l-fucose isomerase. Although xylitol acted as an inhibitor of the reaction, even at a high ratio of xylitol to l-xylulose the inhibition did not reach 50%.  相似文献   

20.
《Free radical research》2013,47(6):726-739
Abstract

Mefenamic acid, a non-steroidal antiinflammatory drug (NSAID), directly and dose-dependently exhibits neuroprotective activity. In our study, we investigated the effects of mefenamic acid against d-serine on oxidative stress in the hippocampus, cortex and cerebellum of rats. Furthermore, the potential inflammatory and apoptotic effects of d-serine and potential protective effect of mefenamic acid were determined at mRNA and protein levels of TNF-α, IL-1β, Bcl-2 and Bax. We found that d-serine significantly increased oxidative stress, levels of inflammation- and apoptosis-related molecules in a region specific manner. Mefenamic acid treatment provided significant protection against the elevation of lipid peroxidation, protein oxidation, levels of TNF-α, IL-1β and Bax. As a conclusion, we suggest that d-serine, as a potential neurodegenerative agent, may have a pivotal role in the regulation of oxidative stress, inflammation and apoptosis; and NSAIDs, such as mefenamic acid, may assist other therapeutics in treating disorders where d-serine-induced neurotoxic mechanisms are involved in.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号