首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
α-1,4-Glucan lyases [glycoside hydrolase family (GH) 31] catalyze an elimination reaction to form 1,5-anhydro-d-fructose (AF), while GH31 α-glucosidases normally catalyze a hydrolytic reaction. We determined that a small amount of AF was produced by GH31 Aspergillus niger α-glucosidase from maltooligosaccharides by elimination reaction, likely via an oxocarbenium ion intermediate.  相似文献   

2.
Purified recombinant sorbose dehydrogenase from Sinorhizobium sp. 97507 exhibited high reactivity for 1,5-anhydro-d-glucitol (1,5-AG) and l-sorbose, but little activity for the other sugars or sugar alcohols tested. Kinetic analysis revealed that its catalytic efficiency (kcat/Km) for l-sorbose and 1,5-AG is 1.8 × 102 and 1.5 × 102 s?1·M?1, respectively.  相似文献   

3.
D-Alanine-D-alanine ligase (Ddl) and its mutants maintain the biosynthesis of peptidoglycan, and the substrate specificity of Ddls partially affects the resistance mechanism of vancomycin-resistant enterococci. Through investigation of Ddls, Ddl from Thermotoga maritima ATCC 43589 showed novel characteristics, vis. thermostability up to 90 °C and broad substrate specificity toward 15 D-amino acids, particularly D-alanine, D-cysteine, and D-serine, in that order.  相似文献   

4.
D-Galactosyl-α-1,3-D-galactopyranose (1) was chemically prepared in a good yield by coupling phenyl 2,3,4,6-tetra-O-benzyl-1-thio-β-D-galactopyranoside (5) or 2,3,4,6-tetra-O-benzyl-α-D-galactopyranosyl bromide (8) with 1,2:5,6-di-O-cyclohexylidene-α-D-galactofuranose (3) with subsequent de-O-benzylation and de-O-cyclohexylidenation of the resulting protected α-1,3-disaccharide.  相似文献   

5.
Depsipeptides are peptide-like polymers consisting of amino acids and hydroxy acids, and are expected to be new functional materials for drug-delivery systems and polymer science. In our previous study, D-alanyl-D-lactate, a type of depsipeptide, was enzymatically synthesized using D-alanine-D-alanine ligase from Thermotoga maritima ATCC 43589 (TmDdl) by Y207F substitution. Thereafter, in this study, further mutagenesis was introduced, based on structural comparison between TmDdl and a well-characterized D-alanine-D-alanine ligase from Escherichia coli. The S137A/Y207F mutant showed higher D-alanyl-D-lactate and lower D-alanyl-D-alanine synthesizing activity than the Y207F mutant. This suggests that substitution at the S137 residue contributes to product selectivity. Saturated mutagenesis on S137 revealed that the S137G/Y207F mutant showed the highest D-alanyl-D-lactate synthesizing activity. Moreover, the mutant showed broad substrate specificity toward D-amino acid and recognized D-lactate and D,L-isoserine as substrates. On the basis of these characteristics, various depsipeptides can be produced using S137G/Y207F-replaced TmDdl.  相似文献   

6.
D-Galactosyl-β1→4-L-rhamnose (GalRha) was produced enzymatically from 1.1 M sucrose and 1.0 M L-rhamnose by the concomitant actions of four enzymes (sucrose phosphorylase, UDP-glucose-hexose 1-phosphate uridylyltransferase, UDP-glucose 4-epimerase, and D-galactosyl-β1→4-L-rhamnose phosphorylase) in the presence of 1.0 mM UDP-glucose and 30 mM inorganic phosphate. The accumulation of GalRha in 1 liter of the reaction mixture reached 230 g (the reaction yield was 71% from L-rhamnose). Sucrose and fructose in the reaction mixture were removed by yeast treatment, but isolation of GalRha by crystallization after yeast treatment was unsuccessful. Finally, 49 g of GalRha was isolated from part of the reaction mixture with yeast treatment by gel-filtration chromatography.  相似文献   

7.
The regioselectivity of β-galactosidase derived from Bacillus circulans ATCC 31382 (β-1,3-galactosidase) in transgalactosylation reactions using D-mannose as an acceptor was investigated. This D-mannose associated regioselectivity was found to be different from reactions using either GlcNAc or GalNAc as acceptors, not only for β-1,3-galactosidase but also for β-galactosidases of different origins. The relative hydrolysis rate of Galβ-pNP and D-galactosyl-D-mannoses, of various linkages, was also measured in the presence of β-1,3-galactosidase and was found to correlate well with the ratio of disaccharides formed by transglycosylation. The unexpected regioselectivity using D-mannose can therefore be explained by an anomalous specificity in the hydrolysis reaction. By utilizing the identified characteristics of both regioselectivity and hydrolysis specificity using D-mannose, an efficient method for enzymatic synthesis of β-1,3-, β-1,4- and β-1,6-linked D-galactosyl-D-mannose was subsequently established.  相似文献   

8.
L-Tartrate in wines and grapes was enzymatically quantified by using the secondary activity of D-malate dehydrogenase (D-MDH). NADH formed by the D-MDH reaction was monitored spectrophotometrically. Under the optimal conditions, L-tartrate (a 1.0 mM sample solution) was fully oxidized by D-MDH in 30 min. A linear relationship was obtained between the absorbance difference and the L-tartrate concentration in the range of a 0.02-1.0 mM sample solution with a correlation coefficient of 0.9991. The relative standard deviation from ten measurements was 1.71% at the 1.0 mM sample solution level. The proposed method was compared with HPLC, and the values determined by both methods were in good agreement.  相似文献   

9.
For easy measurement of 5-keto D-gluconate (5KGA) and 2-keto D-gluconate (2KGA), two enzymes, 5KGA reductase (5KGR) and 2KGA reductase (2KGR) are useful. The gene for 5KGR has been reported, and a corresponding gene was found in the genome of Gluconobacter oxydans 621H and was identified as GOX2187. On the other hand, the gene for 2KGR was identified in this study as GOX0417 from the N-terminal amino acid sequence of the partially purified enzyme. Several plasmids were constructed to express GOX2187 and GOX0417, and the final constructed plasmids showed good expression of 5KGR and 2KGR in Escherichia coli. From the two E. coli transformants, large amounts of each enzyme were easily prepared after one column chromatography, and the preparation was ready to use for quantification of 5KGA or 2KGA.  相似文献   

10.
The D-sorbitol dehydrogenase gene, sldA, and an upstream gene, sldB, encoding a hydrophobic polypeptide, SldB, of Gluconobacter suboxydans IFO 3255 were disrupted in a check of their biological functions. The bacterial cells with the sldA gene disrupted did not produce L-sorbose by oxidation of D-sorbitol in resting-cell reactions at pHs 4.5 and 7.0, indicating that the dehydrogenase was the main D-sorbitol-oxidizing enzyme in this bacterium. The cells did not produce D-fructose from D-mannitol or dihydroxyacetone from glycerol. The disruption of the sldB gene resulted in undetectable oxidation of D-sorbitol, D-mannitol, or glycerol, although the cells produced the dehydrogenase. The cells with the sldB gene disrupted produced more of what might be signal-unprocessed SldA than the wild-type cells did. SldB may be a chaperone-like component that assists signal processing and folding of the SldA polypeptide to form active D-sorbitol dehydrogenase.  相似文献   

11.
2,3-Diaminopropionate ammonia-lyase (DAPAL), which catalyzes α,β-elimination of 2,3-diaminopropionate regardless of its stereochemistry, was purified from Salmonella typhimurium. We cloned the Escherichia coli ygeX gene encoding a putative DAPAL and purified the gene product to homogeneity. The protein obtained contained pyridoxal 5′-phosphate and was composed of two identical subunits with a calculated molecular weight of 43,327. It catalyzed the α,β-elimination of both D- and L-2,3-diaminopropionate. The results confirmed that ygeX encoded DAPAL. The enzyme acted on D-serine, but its catalytic efficiency was only 0.5% that with D-2,3-diaminopropionate. The enzymologic properties of E. coli DAPAL resembled those of Salmonella DAPAL, except that L-serine, D- and L-β-Cl-alanine were inert as substrates of the enzyme from E. coli. DAPAL had significant sequence similarity with the catalytic domain of L-threonine dehydratase, which is a member of the fold-type II group of pyridoxal phosphate enzymes, together with D-serine dehydratase and mammalian serine racemase.  相似文献   

12.
D-Galacturonic acid reductase, a key enzyme in ascorbate biosynthesis, was purified to homogeneity from Euglena gracilis. The enzyme was a monomer with a molecular mass of 38–39 kDa, as judged by SDS–PAGE and gel filtration. Apparently it utilized NADPH with a Km value of 62.5±4.5 μM and uronic acids, such as D-galacturonic acid (Km=3.79±0.5 mM) and D-glucuronic acid (Km=4.67±0.6 mM). It failed to catalyze the reverse reaction with L-galactonic acid and NADP+. The optimal pH for the reduction of D-galacturonic acid was 7.2. The enzyme was activated 45.6% by 0.1 mM H2O2, suggesting that enzyme activity is regulated by cellular redox status. No feedback regulation of the enzyme activity by L-galactono-1,4-lactone or ascorbate was observed. N-terminal amino acid sequence analysis revealed that the enzyme is closely related to the malate dehydrogenase families.  相似文献   

13.
l-ribose isomerase (L-RI) from Cellulomonas parahominis MB426 can convert l-psicose and d-tagatose to l-allose and d-talose, respectively. Partially purified recombinant L-RI from Escherichia coli JM109 was immobilized on DIAION HPA25L resin and then utilized to produce l-allose and d-talose. Conversion reaction was performed with the reaction mixture containing 10% l-psicose or d-tagatose and immobilized L-RI at 40 °C. At equilibrium state, the yield of l-allose and d-talose was 35.0% and 13.0%, respectively. Immobilized enzyme could convert l-psicose to l-allose without remarkable decrease in the enzyme activity over 7 times use and d-tagatose to d-talose over 37 times use. After separation and concentration, the mixture solution of l-allose and d-talose was concentrated up to 70% and crystallized by keeping at 4 °C. l-Allose and d-talose crystals were collected from the syrup by filtration. The final yield was 23.0% l-allose and 7.30% d-talose that were obtained from l-psicose and d-tagatose, respectively.  相似文献   

14.
d-xylose and l-arabinose are the major constituents of plant lignocelluloses, and the related fungal metabolic pathways have been extensively examined. Although Pichia stipitis CBS 6054 grows using d-arabinose as the sole carbon source, the hypothetical pathway has not yet been clarified at the molecular level. We herein purified NAD(P)H-dependent d-arabinose reductase from cells grown on d-arabinose, and found that the enzyme was identical to the known d-xylose reductase (XR). The enzyme activity of XR with d-arabinose was previously reported to be only 1% that with d-xylose. The kcat/Km value with d-arabinose (1.27 min?1 mM?1), which was determined using the recombinant enzyme, was 13.6- and 10.5-fold lower than those with l-arabinose and d-xylose, respectively. Among the 34 putative sugar transporters from P. stipitis, only seven genes exhibited uptake ability not only for d-arabinose, but also for d-glucose and other pentose sugars including d-xylose and l-arabinose in Saccharomyces cerevisiae.  相似文献   

15.
The synthesis is reported of β-D-fructopyranosyl-(2→6)-D-glucopyranose that had previously been isolated from a fermented plant extract as a new saccharide. A disaccharide was predominately formed from an equal amount of D-glucose and D-fructose under melting conditions at 140 °C for 60 to 90 min. This saccharide was isolated from the reaction mixture by carbon-Celite column chromatography and preparative HPLC, and was confirmed to be β-D-fructopyranosyl-(2→6)-D-glucopyranose by TOF-MS and NMR analyses.  相似文献   

16.
A correlation between the quantitative changes in L-methionine analogs, the ratio of D-serine/L-serine during the pupal stage, and metamorphosis was observed. The glycoside appearing at low blood sugar values during the pupal stage was isolated and characterized as D-glucosyl-L-tyrosine. 1H-NMR indicated the appearance and increase of this glycoside, and Mirrorcle Ray CV4 equipment was used to take X-ray pictures of the pupal bodies. The results indicate that γ-cyclic di-L-glutamate and L-methionine sulfone might be concerned with ammonia assimilation in the pupae, and that D-glucosyl-L-tyrosine served as a switch for the fatty acid (pupal oil) dissimilation hybrid system.  相似文献   

17.
D-Ins(1,3,4,5)P4 and unnatural L-Ins(1,3,4,5)P4 were prepared in gram-quantities from D- and L-2,6-di-O-benzyl-myo-inositol by a chemical phosphorylation and deprotection step in high yield and purity without extensive purification. The optically pure benzyl derivatives were obtained by enzyme-catalyzed resolution of racemic 2,6-di-O-benzyl-myo-inositol under acyl-transfer conditions in vinyl acetate as the acyl donor. The lipase of Candida antarctica only acetylated regio- and enantio-selectively the L-enantiomer, providing exclusively L-5-acetyl-2,6-di-O-benzyl-myo-inositol, whereas the D-enantiomer remained unchanged.  相似文献   

18.
The sheath of Sphaerotilus natans is composed of cysteine-rich peptide and polysaccharide moieties. The polysaccharide was prepared by treating the sheath with hydrazine, and was determined to be a mucopolysaccharide containing β-D-GlcA, β-D-Glc, α-D-GalN, and β-D-GalN. To elucidate the structure of the peptide, the sheath was labeled with a thiol-selective fluorogenic reagent, 4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole. Enantiomeric determination of the S-derivatized Cys in the fluorescent sheath suggested that it contained L-Cys mainly. Fluorescent cysteinylglycine was detected in the partial acid hydrolysate of the fluorescent sheath. The sheath-degrading enzyme secreted by Paenibacillus koleovorans produced a fluorescent disaccharide-dipeptide composed of GalN, Gly, and N-acetylated Cys from the fluorescent sheath. The disaccharide and dipeptide moieties were found to be connected by an amide bond. Based on these results, the sheath was deduced to be formed by association of a mucopolysaccharide modified with N-acetyl-L-cysteinylglycine.  相似文献   

19.
Pyridoxine (vitamin B6) in Rhizobium is synthesized from 1-deoxy-D-xylulose and 4-hydroxy-L-threonine. To define the pathway enzymatically, we established an enzyme reaction system with a crude enzyme solution of R. meliloti IFO14782. The enzyme reaction system required NAD+, NADP+, and ATP as coenzymes, and differed from the E. coli enzyme reaction system comprising PdxA and PdxJ proteins, which requires only NAD+ for formation of pyridoxine 5′-phosphate from 1-deoxy-D-xylulose 5-phosphate and 4-(phosphohydroxy)-L-threonine.  相似文献   

20.
Pyridoxamine (pyridoxine) 5′-phosphate oxidase (EC. 1.4.3.5) has been purified from dry baker’s yeast to an apparent homogeneity on a polyacrylamide disc gel electrophoresis in the presence of 10 µm of phenylmethylsulfonyl fluoride throughout purification.

1) The purified enzyme, obtained as holo-flavoprotein, has a specific activity of 27µmol/mg/hr for pyridoxamine 5′-phosphate at 37°C, and a ratio of pyridoxine 5′-phosphate oxidase to pyridoxamine 5′-phosphate oxidase is approximately 0.25 at a substrate concentration of 285 µm. Km values for both substrates are 18 µm for pyridoxamine 5′-phosphate and 2.7 µm for pyridoxine 5′-phosphate, respectively.

2) The enzyme can easily oxidize pyridoxamine 5′-phosphate, but when pyridoxamine and pyridoxine 5′-phosphate are coexisted in a reaction mixture the enzyme activity is markedly suppressed much beyond the values expected from its high affinity (low Km) and low Vmax for the latter substrate.

3) Optimum temperature for both substrates is approximately 45°C, and optimum pH is near 9 for pyridoxamine 5′-phosphate and 8 for pyridoxine 5′-phosphate.

4) From the data obtained, the mechanism of regulation of this enzyme in production of pyridoxal 5′-phosphate and a reasonable substrate for the enzyme in vivo are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号