首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Free radical research》2013,47(1):591-594
Corneal collagen was labeled in vivo by injection of 14C-proline into the anterior chamber of rabbit eyes. The isolated corneal collagen was incubated in iron-free phosphate buffered saline (pH 7.4) containing I mM axorbate and 0.1 mM CuSO4 for either 1 hour or 3 hours at 37°. Addition of 2 volumes of 8 M urea-I mM dithiothreitol and heating for 1 min at 100° solubilized virtually all of the collagen in the control incubations but left a significant amount of insoluble collagen in specimens exposed to the hydroxyl radical generating system. This residue amounted to 19% and 38% of the initial radioactivity in samples incubated for 1 h and 3 h, respectively. The chromatographic profiles (gel filtration on CL-4B) of the soluble fraction showed an increase in both aggregation and degradation products of collagen in the 1 h incubation mixture, whereas after 3 h there was an increase only in degradation products. These observations suggest that additional crosslinking of the soluble collagen aggregates observed at 1 h may be responsible for their subsequent disappearance at 3 h, with concomitant increase of the insoluble fraction. Collagen degradation by OH may play a role in corneal ulceration, whereas hydroxyl radical-mediated crosslinking is consistent with age-dependent increases in insoluble collagen.  相似文献   

2.
Isolation and characterization of insoluble collagen of dog hearts.   总被引:1,自引:0,他引:1  
A procedure for isolating insoluble heart collagen has been developed. The method involves the use of defined optimal conditions of sonication that yield no thermal denaturation of the triple-helical structure nor disruption of the primary structure of the collagen molecules; this is followed by extraction of isolates with nondenaturing agents. The amino acid residues of the isolates are then reacted with dansyl chloride to allow determination of amino-terminal residues and quantification of the collagen. The method has several advantages over existing procedures: (i) There is no other method available for isolation of undenatured insoluble heart collagen in almost pure form (consists of 96% of type I collagen) and in a good yield. Sonication of tissue at or below 4 degrees C for a total of 120 s (15 s sonication repeated 8 times at 120-s intervals) yielded insoluble collagen fibers with 90% yield and a 20-fold purification as determined by the increase in Hyp content of the isolates. Extraction of these isolates with 0.6 M KCl and 1 M NaCl at 4 degrees C resulted in a 22-fold purification with 70% yield, while the classical extraction method with nondenaturing reagents yielded only 5-fold purification. (ii) There has been little study of the derivatization of an insoluble protein (collagen) with dansyl chloride. The Lys residues of collagen could be recovered as epsilon-Dns-Lys in 84% yield from a reverse-phase C-18 column by high-performance liquid chromatography. This assay allows measurement of 0.1-100 nmol epsilon-Dns-Lys. (iii) The method generates direct information concerning the quantity of collagen and its nature with respect to amino groups.  相似文献   

3.
Corneal collagen was labeled in vivo by injection of 14C-proline into the anterior chamber of rabbit eyes. The isolated corneal collagen was incubated in iron-free phosphate buffered saline (pH 7.4) containing I mM axorbate and 0.1 mM CuSO4 for either 1 hour or 3 hours at 37°. Addition of 2 volumes of 8 M urea-I mM dithiothreitol and heating for 1 min at 100° solubilized virtually all of the collagen in the control incubations but left a significant amount of insoluble collagen in specimens exposed to the hydroxyl radical generating system. This residue amounted to 19% and 38% of the initial radioactivity in samples incubated for 1 h and 3 h, respectively. The chromatographic profiles (gel filtration on CL-4B) of the soluble fraction showed an increase in both aggregation and degradation products of collagen in the 1 h incubation mixture, whereas after 3 h there was an increase only in degradation products. These observations suggest that additional crosslinking of the soluble collagen aggregates observed at 1 h may be responsible for their subsequent disappearance at 3 h, with concomitant increase of the insoluble fraction. Collagen degradation by OH may play a role in corneal ulceration, whereas hydroxyl radical-mediated crosslinking is consistent with age-dependent increases in insoluble collagen.  相似文献   

4.
The aim of this paper was to identify pre-slaughter factors that modify total and insoluble collagen contents in bovine muscle to construct a model of collagen dynamics. The meta-analyses were performed with primary data of total (n = 1165) and insoluble (n = 1145) collagen contents from INRA experiments obtained from different muscles in young bulls, cows and steers. According to both the bibliography and meta-analyses, total collagen content and solubility were greatly affected by the muscle (type). Moreover, the pattern of the evolution of collagen characteristics was similar among Longissimus, Semitendinosus and Triceps brachii muscles in young bulls. In cows, collagen contents in the Triceps brachii muscle had delayed dynamics compared with the other muscles. Collagen characteristics differed among breeds because of variation in the maturity of the breed. Similarly, according to the meta-analyses, total and insoluble collagen content evolutions with the degree of maturity (DOM; proportion of adult weight reached at slaughter) were different in dairy and rustic breeds from those of beef breeds, especially in bulls. Although the relationships between collagen content and DOM were quantified in different muscles and sexes, the precision of the fitted equations was not sufficient for prediction. Consequently, relying on the hypotheses raised by the meta-analysis and the literature, an approach to further develop a dynamic mechanistic model of soluble and insoluble collagen content is proposed.  相似文献   

5.
1. The collagen hydroxyproline in rat liver was composed of 3.5% neutral-soluble collagen, 4.9% acid-soluble collagen and 91.6% insoluble collagen. In labelling studies with [(14)C]proline in vitro, the specific radioactivities of neutral-soluble, acid-soluble and insoluble collagens in rat liver were found to be 233000, 69000 and 830d.p.m./mumol of hydroxyproline respectively after 1h. 2. During subacute carbon tetrachloride poisoning the hepatic content of insoluble collagen markedly increased, whereas those of soluble collagens did not change. During recovery from subacute poisoning hepatic contents of soluble collagens were markedly decreased. 3. After 8 weeks of carbon tetrachloride poisoning the specific radioactivities of hepatic soluble collagens increased, while that of insoluble collagen decreased. During recovery from subacute poisoning, the specific radioactivities of soluble collagens decreased to the normal range and that of insoluble collagen further decreased. 4. Hepatic collagenolytic activity solubilizing insoluble collagen, which differs from mammalian collagenase, decreased under the conditions of the subacute poisoning and also during recovery from subacute poisoning.  相似文献   

6.
To explore the effects of growth retardation, caused by restricted protein intake, on collagen turnover in the whole skin, Sprague-Dawley rats (n = 20) were labelled with 18O2 and fed on either an adequate (18%) or a low (3%) lactalbumin diet. Skin biopsies were obtained at intervals during the following 6 months. Independent groups of animals (n = 186) were used to determine the size of the 0.5 M-acetic acid-soluble and -insoluble collagen pools in the entire skin of healthy and malnourished rats. Collagen was estimated by measurement of hydroxyproline. Soluble-collagen synthesis rates were equivalent to 99 +/- 8 mumol of hydroxyproline/day in healthy animals and 11 +/- 2 mumol/day in malnourished rats. Insoluble-collagen synthesis rates were 32 and 5 mumol of hydroxyproline/day in the healthy and protein-depleted rats respectively. The degradation of soluble collagen amounted to 37 +/- 8 and 6 +/- 2 mumol of hydroxyproline/day in the healthy and malnourished groups respectively. Efflux of collagen from the soluble collagen, defined as the sum of the rate of soluble collagen that is degraded plus that which matures into insoluble collagen, was 70 +/- 8 and 11 +/- 2 mumol of hydroxyproline/day in the healthy and malnourished groups respectively. Insoluble collagen was not degraded in either group. The fraction of soluble collagen leaving the pool that was converted into insoluble collagen was 0.46 in both diet groups. It is concluded that the turnover of soluble collagen is markedly decreased with malnutrition, but degradation and conversion into insoluble collagen account for the same proportions of efflux from the soluble-collagen pool as in rapidly growing rats.  相似文献   

7.
8.
A platelet membrane glycoprotein, 61 kDa, has been identified, which binds specifically to insoluble collagen. The detection of this protein was accomplished by incubating radiolabeled Triton-solubilized platelet supernatant with insoluble collagen, and, after washing the collagen pellet, extracting the 61-kDa glycoprotein from the pellet with sodium dodecyl sulfate buffer. The optimal conditions for specific binding were incubation of 120 micrograms of total platelet supernatant protein with 2 mg of collagen at 4 degrees C for 0.5 h in 0.5 ml of the incubating buffer (20 mM Tris, 150 mM NaCl, 2 mM CaCl2, 1 mM MgCl2, and 0.2% Triton, pH 7.4). The 61-kDa glycoprotein is cleaved by trypsin into a major peptide (44 kDa) and a smaller peptide(s) linked together by disulfide bonds in a molecule which still binds to collagen. When intact platelets are treated first with trypsin and then with dithiothreitol, the 44-kDa peptide is released and was shown to bind to collagen. We conclude that the 61-kDa glycoprotein is a platelet membrane protein which specifically interacts through its extracellular domain with insoluble collagen, and, thus, must be considered as a possible component of the initial platelet-matrix adhesion process which leads to platelet aggregation in vivo.  相似文献   

9.
1. The effects of various concentrations of ascorbic acid on the quality and quantity of the insoluble extracellular matrices produced by two strains of cultured rat smooth-muscle cells were studied. 2. Ascorbic acid was necessary for the appearance of insoluble collagen in the extracellular matrix. 3. Secretion of soluble collagen continued in the absence of ascorbic acid, but this soluble collagen was markedly underhydroxylated. 4. The amount of insoluble collagen present in the matrix was directly related to the ascorbic acid concentration. 5. The insoluble collagen that appeared in the matrix under conditions where ascorbic acid was limiting was no more than 7% underhydroxylated. 6. In contrast, the amount of insoluble elastin produced was inversely proportional to the ascorbic acid concentration. 7. The elastin produced in the absence of ascorbic acid had the expected amino acid composition, but hydroxyproline was absent. 8. The hydroxyproline content of elastin was also directly dependent on the ascorbic acid concentration. 9. Ascorbic acid had variable effects on the quantity of glycoprotein(s) present in the matrix. 10. The appearance of insoluble collagen in the extracellular matrices produced by cultured human fibroblasts and calf endothelial cells was also completely dependent on the presence of ascorbic acid.  相似文献   

10.
A simple method to prepare size-regulated spheroids has been successfully developed by combining a temperature responsive polymer, poly-N-isopropyl-acrylamide (PNIPAAm), conjugated with collagen and ultraviolet (UV) irradiation with photomasks. The coating layer composed of PNIPAAm conjugated with collagen functions as a cell substratum at 37 degrees C, then when lowering the temperature of culture medium the cells attached to it detach as a self-supporting sheet. This is because PNIPAAm dissolves into the culture medium below the lower critical solution temperature LCST; about 30 degrees C, but it is insoluble above the LCST. The detached cell sheet forms a multicellular spheroid. On the other hand, UV effectively immobilized collagen in the coating layer because UV generates crosslinkages in collagen molecules. Crosslinkages were quantitatively introduced by controlling the energy of UV-irradiation thus the ability of human dermal fibroblasts to attach to and detach from the surface was tightly controlled. When the collagen content in the coating layer was 9 mug/cm(2) (collagen ratio, 4.5%), UV-irradiation energy of 2000 J/m(2) was suitable to obtain 100% of the attachability and detachability. However, the cells did not attach to the nonirradiated surface at this collagen content because insufficient collagen was immobilized. Using photomakes to apply UV-irradiation, it was possible to obtain cell-adhesive areas(irradiated areas) and nonadhesive areas (nonirradiated areas) on the same surface. Consequently, spheroids of any size and in any number from one dish were prepared. The viability of cells in spheroids 350 mum in diameter was maintained at a high level for 28 days; however, viability of spheroids 800 mum in diameter rapidly decreased for 2 days. The size was very important to maintain the viability. This novel method is useful to develop size-regulated spheroids for different applications; for example, in toxicology tests. (c) 1994 John Wiley & Sons, Inc.  相似文献   

11.
Rats with subcutaneously implanted polyurethane sponges were exposed 6 hours daily for 7 days to high ambient atmospheric pressures (1.5, 2, 2.5 and 3 ATA). Another group was exposed 4 hours daily for 4 weeks to 3 ATA before inducing granulation tissue formation. 14C-proline was administered 16 hours before terminating the experiment. Free hydroxyproline, soluble and insoluble collagen and total noncollagenous protein were isolated from the 7-day granuloma and the amount and radioactivity of 14C-hydroxyproline and 14C-proline were determined. Seven days' graduated hyperbarism did not affect collagen synthesis; the maturation of collagen to insoluble forms was inhibited at 2 and 2.5 ATA, but not at 3 ATA. Stimulated degradation of collagen (free hydroxyproline) was observed at 2, 2.5 and 3 ATA. In animals subjected to long-term exposure at 3 ATA pressure, the collagen in the granuloma matured to insoluble forms more quickly. Biochemical changes were correlated with changes in the fine structure of the granulation tissue. The appearance of the fibroblast proteosynthetic apparatus was not influenced by hyperbarism. Progressive spherical transformation, fusion of mitochondria and lysosomal activation in the pericapillary fibroblasts occurred at 2, 2.5 and 3 ATA. In short-term experiment, the formation of cytosegresomes and cellular necrosis also contributed to the effect at 3 ATA, which is thus already a toxic pressure for granulation tissue.  相似文献   

12.
Rats of synthesis and degradation in vivo of collagens in 0.5 M-acetic acid-soluble and -insoluble extracts from skins of three growing rats were determined by using a labelling procedure involving exposure of the animals to an atmosphere of 18O2 for 36 h. For comparison, rats also received injections of [2H]proline. Serial skin biopsies were taken at frequent intervals over 392 days. Enrichment of 18O and 2H in the hydroxyproline of the collagen fractions was determined by gas chromatography-mass spectrometry. Changes in size of the soluble and insoluble collagen pools were considered in the evaluation of isotope kinetic data. The insoluble collagen fraction showed no degradation. The efflux (mean +/- S.D., expressed as mumol of hydroxyproline) from the soluble collagen pool was estimated to be 59.9 +/- 1.9 per day from the 18O data, and 25.5 +/- 7.5 per day from the 2H results. The finding indicates significant reutilization of 2H-radiolabelled proline for hydroxyproline synthesis. From these isotope data and estimates of size of the collagen pools it was determined that 55% of the collagen disappearing from the soluble pool was due to maturation into insoluble collagens and 45% of the disappearance was a result of actual degradation of soluble collagen. These results confirm the utility of 18O2 as a non-reutilizable label for studies of collagen turnover in vivo.  相似文献   

13.
Effect of ascorbate on collagen synthesis by lung embryonic fibroblasts   总被引:4,自引:0,他引:4  
Summary Total insoluble collagen and hydroxyproline formation were examined in lung embryonic fibroblasts (IMR-90) grown in the presence or absence of added ascorbate. As expected, when the cells from both groups (+ and −ascorbate) are pulsed with [14C]proline in the presence of ascorbate, the percent hydroxylation in a 24-hr period does not vary significantly. However, there are dramatic differences in the quantity and quality of the insoluble collagen fraction produced by those cells grown for a long period of time with added ascorbate. Those cells deprived of continuous addition of ascorbate to the culture medium do not display large quantities of accumulated collagen in the cell layer fractions as measured by the hydroxyproline content, whereas the cells grown in the presence of ascorbate contain significant amounts of accumulated collagen. A new method for examining the extracellular insoluble collagen produced in cell cultures is described in these studies. With the aid of pancreatic elastase relatively pure insoluble collagen can be obtained from cells grown in culture. In those cells grown in the presence of ascorbate, the purified insoluble collagen yeilds appropriately banded fibrils when examined in the electron microscope and has an amino-acid composition that is compatible with pure collagen. On the other hand, those cells grown in the absence of ascorbate do not yield purified insoluble collagen as determined by these same criteria. The elastase procedure for the purification of insoluble collagen in cell cultures is simple, easy to use and allows one to assess additional aspects of collagen biosynthesis.  相似文献   

14.
Fibroblasts grown from the skin of patients with Marfan's syndrome (mother and son) were investigated cytogenetically and biochemically together with fibroblasts from healthy individuals.In Marfan's syndrome the cross-linking of the tropocollagen chains is disturbed already on the cellular level. The high ratio of soluble collagen to insoluble collagen (3:1), compared with controls, where the ratio is 1:1, supports this concept. The high free hydroxyproline content in normal fibroblasts and in those of Marfan's syndrome (in early passages) forming about 70% of total cell hydroxyproline speaks for the participation of fibroblasts not only in the synthesis but also in the catabolism of newly formed young forms of collagenous proteins. In contrast to controls the fibroblasts from the skin of both patients suffering from Marfan's syndrome changed in the sense of ageing depending on the duration of their cultivation in vitro. This stability is illustrated by the equalization of the ratio of soluble to insoluble collagenous proteins to 1:1.Presented at the Symposium on Genetics in Ophthalmology, June 10th 1965 in Brno, Czechoslovakia.  相似文献   

15.
The effect of protein malnutrition on the metabolism of collagen was studied in young female albino rats after a single injection of 3H-proline by determining the specific as well as total activities of 3H-hydroxyproline in the skin collagen fractions and in the urine. a) Compared to controls, the total activity of 3H-hydroxyproline in the soluble collagen and in the urine was significantly lower in the deficient group at 12 hrs. after the administration of 3H-proline. b) The urinary excretion of hydroxyproline and the total activity of urinary 3H-hydroxyproline measured after four weeks of labelled proline injection were also considerably decreased in the protein-deficient animals. c) When the total radioactivities of both soluble and insoluble collagen are expressed as a percentage of the sum of both, the recorded activity was more in soluble and less in insoluble collagen at 12 and 120 hrs. after the administration of 3H-proline, due to the influence of protein malnutrition. The results of the present investigation therefore clearly indicate that the synthesis of collagen is decreased and accompanied by a retardation in the maturation of soluble to insoluble collagen in the protein-deficient animals compared to controls. In addition, protein deficiency is accompanied by decreased rates of catabolism of both soluble and insoluble collagen.  相似文献   

16.
This study was conducted to determine the concentration of total, free, peptide-bound, protein-bound, soluble and insoluble collagen hydroxyproline (Hyp) in tissues from the Arabian camel (Camelus dromedarius). Results indicated that there were significant differences in the concentration of total, free, peptide-bound, protein-bound, soluble and insoluble collagen Hyp in various tissues (P < 0.01). Camel kidney showed a significantly high concentration of total, free, peptide-bound and protein-bound Hyp and collagen content as compared to other tissues examined (P < 0.01). Kidney also showed a significantly high concentration of soluble collagen Hyp as compared to other tissues examined (P < 0.01). However, the concentration of insoluble collagen Hyp was significantly high in liver when compared to other tissues (P < 0.01). These variations may result from differences in the collagen structure and/or composition in this species.  相似文献   

17.
Exclusion of dextrans by meshworks of collagenous fibres.   总被引:2,自引:2,他引:0       下载免费PDF全文
Insoluble collagen from human dermis was equilibrated in a physiological medium with mixtures of 3H2O and fluorescein-conjugated dextrans of different molecular weights. Dextrans of mol.wts. greater than 10(5) were excluded from a volume of 3.82+/-0.87 ml(S.D.) per g of collagen; dextrans of lower molecular weight occupied a larger volume. The apparent excluded volume was proportional to the weight of the collagen. Dansylated albumin behaved similarly to dextran; the polymeric collagen from rat skin exhibited a much larger excluded volume than the insoluble collagen. These results indicated that the volume available to the plasma proteins in human dermis was limited by insoluble collagen as well as by the glycosaminoglycans of the tissue.  相似文献   

18.
Collagen is an insoluble protein that widely distributes in the extracellular matrix of marine animals. Collagen degradation is an important step in the marine nitrogen cycle. However, the mechanism of marine collagen degradation is still largely unknown. Here, a novel subtilisin-like collagenolytic protease, myroicolsin, which is secreted by the deep sea bacterium Myroides profundi D25, was purified and characterized, and its collagenolytic mechanism was studied. Myroicolsin displays low identity (<30%) to previously characterized subtilisin-like proteases, and it contains a novel domain structure. Protein truncation indicated that the Pro secretion system C-terminal sorting domain in the precursor protein is involved in the cleavage of the N-propeptide, and the linker is required for protein folding during myroicolsin maturation. The C-terminal β-jelly roll domain did not bind insoluble collagen fiber, suggesting that myroicolsin may degrade collagen without the assistance of a collagen-binding domain. Myroicolsin had broad specificity for various collagens, especially fish-insoluble collagen. The favored residue at the P1 site was basic arginine. Scanning electron microscopy and atomic force microscopy, together with biochemical analyses, confirmed that collagen fiber degradation by myroicolsin begins with the hydrolysis of proteoglycans and telopeptides in collagen fibers and fibrils. Myroicolsin showed strikingly different cleavage patterns between native and denatured collagens. A collagen degradation model of myroicolsin was proposed based on our results. Our study provides molecular insight into the collagen degradation mechanism and structural characterization of a subtilisin-like collagenolytic protease secreted by a deep sea bacterium, shedding light on the degradation mechanism of deep sea sedimentary organic nitrogen.  相似文献   

19.
Bone matrix and tendon are compared in terms of their carbohydrate and non-collagenous protein composition. The collagen content of both tissues was similar (90-91%), but bone matrix had at least three times as much sialic acid (0.28%) as tendon (0.08%). Smaller differences were found in the analysis of hexoses and hexosamines. After digestion with bacterial collagenase, about 9% of the total protein from both tissues was non-diffusible on dialysis, and this contained only 0.15% (bone) and 0.7% (tendon) of the original hydroxyproline; recovery of sialic acid was 86-87%. The collagenase-resistant soluble material amounted to about 9% (bone matrix) and 5% (tendon); the insoluble residues were 1 and 4% respectively. There were clear differences in the carbohydrate contents of the digests, but the amino acid compositions were similar. When the soluble digests were chromatographed on DEAE-cellulose, the elution profiles indicated the presence in each tissue of a variety of glycoproteins and a proteoglycan fraction, and showed clearly that an acidic glycoprotein corresponding to bone sialoprotein was not present in tendon.  相似文献   

20.
Bacterial collagenase was used to compare the extent of digestion of tropocollagen monomers in solution and in reconstituted fibrils with that of tropocollagen molecules intermolecularly cross-linked within insoluble polymeric collagen fibrils obtained from mature tendons at given time-intervals. The extent of digestion of tropocollagen monomers in solution was directly proportional to the enzyme concentration (a range of enzyme substrate molar ratios 1:200 to 1:10 was used). The extent of digestion of polymeric collagen was followed by measuring the solubilization of fluorescent peptides from fluorescent-labelled insoluble polymeric collagen fibrils. The extent of digestion of tropocollagen within polymeric collagen was linear over a very small range of enzyme concentrations, when the enzyme/substrate ratio in the reaction mixture was less than 1:400 on a molecular basis. The behavior of tropocollagen in the form of reconstituted collagen fibrils, which had been matured at 37 degrees C for 8 weeks, was intermediate between the behaviour of solutions of tropocollagen and insoluble polymeric collagen fibrils. The significance of the results is discussed in terms of the structure of polymeric collagen fibrils and the protection against enzymic attack provided by tropocollagen molecules on the circumference of the fibril. The results suggest that assays of collagenase activities based on tropocollagen as substrate cannot be directly related to the ability of these enzymes to degrade mature insoluble collagen fibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号