首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytotoxic T lymphocytes (CTLs) are important agents in the control of intracellular pathogens, which specifically recognize and kill infected cells. Recently developed experimental methods allow the estimation of the CTL''s efficacy in detecting and clearing infected host cells. One method, the in vivo killing assay, utilizes the adoptive transfer of antigen displaying target cells into the bloodstream of mice. Surprisingly, killing efficacies measured by this method are often much higher than estimates obtained by other methods based on, for instance, the dynamics of escape mutations. In this study, we investigated what fraction of this variation can be explained by differences in peptide loads employed in in vivo killing assays. We addressed this question in mice immunized with lymphocytic choriomeningitis virus (LCMV). We conducted in vivo killing assays varying the loads of the immunodominant epitope GP33 on target cells. Using a mathematical model, we determined the efficacy of effector and memory CTL, as well as CTL in chronically infected mice. We found that the killing efficacy is substantially reduced at lower peptide loads. For physiological peptide loads, our analysis predicts more than a factor 10 lower CTL efficacies than at maximum peptide loads. Assuming that the efficacy scales linearly with the frequency of CTL, a clear hierarchy emerges among the groups across all peptide antigen concentrations. The group of mice with chronic LCMV infections shows a consistently higher killing efficacy per CTL than the acutely infected mouse group, which in turn has a consistently larger efficacy than the memory mouse group. We conclude that CTL killing efficacy dependence on surface epitope frequencies can only partially explain the variation in in vivo killing efficacy estimates across experimental methods and viral systems, which vary about four orders of magnitude. In contrast, peptide load differences can explain at most two orders of magnitude.  相似文献   

2.
3.
In order to fuse lytic granules (LGs) with the plasma membrane at the immunological synapse, cytotoxic T lymphocytes (CTLs) have to render these LGs fusion‐competent through the priming process. In secretory tissues such as brain and neuroendocrine glands, this process is mediated by members of the Munc13 protein family. In human CTLs, mutations in the Munc13‐4 gene cause a severe loss in killing efficiency, resulting in familial hemophagocytic lymphohistiocytosis type 3, suggesting a similar role of other Munc13 isoforms in the immune system. Here, we investigate the contribution of different Munc13 isoforms to the priming process of murine CTLs at both the mRNA and protein level. We demonstrate that Munc13‐1 and Munc13‐4 are the only Munc13 isoforms present in mouse CTLs. Both isoforms rescue the drastical secretion defect of CTLs derived from Munc13‐4‐deficient Jinx mice. Mobility studies using total internal reflection fluorescence microscopy indicate that Munc13‐4 and Munc13‐1 are responsible for the priming process of LGs. Furthermore, the domains of the Munc13 protein, which is responsible for functional fusion, could be identified. We conclude from these data that both isoforms of the Munc13 family, Munc13‐1 and Munc13‐4, are functionally redundant in murine CTLs .   相似文献   

4.
We report a novel adaptation of the Radial Monolayer Cell Migration assay, first reported to measure the radial migration of adherent tumor cells on extracellular matrix proteins, for measuring the motility of fluorescently-labeled, non-adherent human or murine effector immune cells. This technique employs a stainless steel manifold and 10-well Teflon slide to focally deposit non-adherent T cells into wells prepared with either confluent tumor cell monolayers or extracellular matrix proteins. Light and/or multi-channel fluorescence microscopy is used to track the movement and behavior of the effector cells over time. Fluorescent dyes and/or viral vectors that code for fluorescent transgenes are used to differentially label the cell types for imaging. This method is distinct from similar-type in vitro assays that track horizontal or vertical migration/invasion utilizing slide chambers, agar or transwell plates. The assay allows detailed imaging data to be collected with different cell types distinguished by specific fluorescent markers; even specific subpopulations of cells (i.e., transduced/nontransduced) can be monitored. Surface intensity fluorescence plots are generated using specific fluorescence channels that correspond to the migrating cell type. This allows for better visualization of the non-adherent immune cell mobility at specific times. It is possible to gather evidence of other effector cell functions, such as cytotoxicity or transfer of viral vectors from effector to target cells, as well. Thus, the method allows researchers to microscopically document cell-to-cell interactions of differentially-labeled, non-adherent with adherent cells of various types. Such information may be especially relevant in the assessment of biologically-manipulated or activated immune cell types, where visual proof of functionality is desired with tumor target cells before their use for cancer therapy.  相似文献   

5.
Glioblastoma multiforme, the most aggressive primary brain tumor, is maintained by a subpopulation of glioma cells with self-renewal properties that are able to recapitulate the entire tumor even after surgical resection or chemo-radiotherapy. This typifies the vast heterogeneity of this tumor with the two extremes represented on one end by the glioma stemlike cells (GSC) and on the other by the glioma differentiated cells (GDC). Interestingly, GSC are more sensitive to immune effector cells than the GDC counterpart. However, how GSC impact on the killing on the GDC and vice versa is not clear. Using a newly developed cytotoxicity assay allowing to simultaneously monitor cytotoxic lymphocytes-mediated killing of GSC and GDC, we found that although GSC were always better killed and that their presence enhanced the killing of GDC. In contrast, an excess of GDC had a mild protective effect on the killing of GSC, depending on the CTL type. Overall, our results suggest that during combination therapy, immunotherapy would be the most effective after prior treatment with conventional therapies.  相似文献   

6.
7.
在乙型肝炎病毒(HBV)感染过程中,适应性免疫与病毒的致病和清除密切相关。一般认为,体液免疫产生的抗体可以清除外周循环的病毒颗粒,从而阻止病毒在宿主体内的传播,细胞免疫主要清除被感染细胞中的病毒。HBV特异性的细胞毒性T淋巴细胞(CTL)在抑制HBV复制过程中发挥着重要的作用。CTL在肝内主要通过分泌γ干扰素抑制病毒,同时,当CTL识别HBV抗原后,HBV特异性CTL募集抗原非特异性炎症细胞对肝组织浸润,造成肝细胞的损伤。对CTL抗病毒作用进行深入研究,将为乙型肝炎的治疗开辟新的途径。  相似文献   

8.
CD8+ cytotoxic T lymphocytes (CTL) and natural killer cells are the main cytotoxic killer cells of the human body to eliminate pathogen-infected or tumorigenic cells (also known as target cells). To find their targets, they have to navigate and migrate through complex biological microenvironments, a key component of which is the extracellular matrix (ECM). The mechanisms underlying killer cell’s navigation are not well understood. To mimic an ECM, we use a matrix formed by different collagen concentrations and analyze migration trajectories of primary human CTLs. Different migration patterns are observed and can be grouped into three motility types: slow, fast, and mixed. The dynamics are well described by a two-state persistent random walk model, which allows cells to switch between slow motion with low persistence and fast motion with high persistence. We hypothesize that the slow motility mode describes CTLs creating channels through the collagen matrix by deforming and tearing apart collagen fibers and that the fast motility mode describes CTLs moving within these channels. Experimental evidence supporting this scenario is presented by visualizing migrating T cells following each other on exactly the same track and showing cells moving quickly in channel-like cavities within the surrounding collagen matrix. Consequently, the efficiency of the stochastic search process of CTLs in the ECM should strongly be influenced by a dynamically changing channel network produced by the killer cells themselves.  相似文献   

9.
Skewing of the T-cell receptor repertoire of CD8+ T cells has been shown in some persistent infections with viruses, such as human immunodeficiency virus, simian immunodeficiency virus, and Epstein-Barr virus. We have demonstrated that similar distortions also occur in nonpersistent measles virus infection. In addition, two of four children immunized with live, attenuated measles virus showed larger and more persistent CD8+ T-cell expansions than their naturally infected counterparts. The expanded lymphocyte populations were monoclonal or oligoclonal and lysed target cells infected with recombinant vaccinia virus expressing measles virus protein. These results demonstrate that the expansions of CD8+ T lymphocytes are antigen driven.  相似文献   

10.
Peripheral blood lymphocytes displayed a plurality of sues and colors when exposed first to a methanolic solution of C.I. basic blue 141, then to an aqueous alkaline solution of the Same dye and Msed in a neutral HEPES buffer containing trace amounts of various salts. As confirmed with purified lymphocyte subpopula-tions obtained with a cell sorter, T helper cells (CD4) were small and their nuclei and cytoplasm stained deep blue. T cytotoxic/suppressor cells (CD 8) were larger than T helper cells, their nuclei stained pale green or blue green and their cytoplasm contained a cluster of magenta colored granules. From start to finish, the stain takes 15 min to perform. Used in the manner described, basic blue 141 holds promise as a rapid means of identifying and differentiating CD4 and CD8 cells under the ordinary light microscope without using monoclonal antibodies or fluorescence.  相似文献   

11.
A vaccinia-specific target antigen for recognition of anti-vaccinia cytotoxic T lymphocytes (CTL) was found to be formed on the surface of infected cells through two distinct processes. In the first phase, the expression of the target antigen was dependent on the dose of inoculated virus, without specific protein synthesis. The target antigen seems to be produced by virus-cell fusion. In the second phase, the expression of the target antigen was accompanied by synthesis of an early protein. In spite of the difference in their mode of expression, the first-phase and the second-phase target antigens were cross-reactive in cytotoxicity inhibition assays. Cowpox virus, CPR Cl strain, brought about a lower response than vaccinia virus, IHD-J strain, in both sensitization of CTL and formation of CTL-susceptible cells at both the first and the second phase. The cross-reactive, but inefficient, recognition of anti-vaccinia CTL for cowpox-infected cells suggested a slight difference in the target antigens of the two viruses. Attempts to identify the target antigen were then made by comparing the polypeptide composition of vaccinia virus, cowpox virus, and their recombinants. SDS-PAGE analysis of trypsinactivated viruses revealed 44K (cowpox)/45K (vaccinia) polypeptides which corresponded to the difference in target cell formation. Trypsinization of the viruses also increased the ability of the virus to induce the production of CTL-susceptible target cells.  相似文献   

12.
Cytotoxic T lymphocytes (CTLs) kill virus-infected cells and tumor cells, and play a critical role in immune protection. Our knowledge of how the CTL killing efficiency varies with CTL and target cell numbers is limited. Here, we simulate a region of lymphoid tissue using a cellular Potts model to characterize the functional response of CTL killing of target cells, and find that the total killing rate saturates both with the CTL and the target cell densities. The relative saturation in CTL and target cell densities is determined by whether a CTL can kill multiple target cells at the same time, and whether a target cell can be killed by many CTLs together. We find that all the studied regimes can be well described by a double-saturation (DS) function with two different saturation constants. We show that this DS model can be mechanistically derived for the cases where target cells are killed by a single CTL. For the other cases, a biological interpretation of the parameters is still possible. Our results imply that this DS function can be used as a tool to predict the cellular interactions in cytotoxicity data.  相似文献   

13.
Cytotoxic T lymphocytes (CTLs) kill virus-infected cells and tumor cells, and play a critical role in immune protection. Our knowledge of how the CTL killing efficiency varies with CTL and target cell numbers is limited. Here, we simulate a region of lymphoid tissue using a cellular Potts model to characterize the functional response of CTL killing of target cells, and find that the total killing rate saturates both with the CTL and the target cell densities. The relative saturation in CTL and target cell densities is determined by whether a CTL can kill multiple target cells at the same time, and whether a target cell can be killed by many CTLs together. We find that all the studied regimes can be well described by a double-saturation (DS) function with two different saturation constants. We show that this DS model can be mechanistically derived for the cases where target cells are killed by a single CTL. For the other cases, a biological interpretation of the parameters is still possible. Our results imply that this DS function can be used as a tool to predict the cellular interactions in cytotoxicity data.  相似文献   

14.
Type 1 diabetes (T1D) is a T cell mediated autoimmune disease. During the pathogenesis, patients become progressively more insulinopenic as insulin production is lost, presumably this results from the destruction of pancreatic beta cells by T cells. Understanding the mechanisms of beta cell death during the development of T1D will provide insights to generate an effective cure for this disease. Cell-mediated lymphocytotoxicity (CML) assays have historically used the radionuclide Chromium 51 (51Cr) to label target cells. These targets are then exposed to effector cells and the release of 51Cr from target cells is read as an indication of lymphocyte-mediated cell death. Inhibitors of cell death result in decreased release of 51Cr. As effector cells, we used an activated autoreactive clonal population of CD8+ Cytotoxic T lymphocytes (CTL) isolated from a mouse stock transgenic for both the alpha and beta chains of the AI4 T cell receptor (TCR). Activated AI4 T cells were co-cultured with 51Cr labeled target NIT cells for 16 hours, release of 51Cr was recorded to calculate specific lysis Mitochondria participate in many important physiological events, such as energy production, regulation of signaling transduction, and apoptosis. The study of beta cell mitochondrial functional changes during the development of T1D is a novel area of research. Using the mitochondrial membrane potential dye Tetramethyl Rhodamine Methyl Ester (TMRM) and confocal microscopic live cell imaging, we monitored mitochondrial membrane potential over time in the beta cell line NIT-1. For imaging studies, effector AI4 T cells were labeled with the fluorescent nuclear staining dye Picogreen. NIT-1 cells and T cells were co-cultured in chambered coverglass and mounted on the microscope stage equipped with a live cell chamber, controlled at 37°C, with 5% CO2, and humidified. During these experiments images were taken of each cluster every 3 minutes for 400 minutes.Over a course of 400 minutes, we observed the dissipation of mitochondrial membrane potential in NIT-1 cell clusters where AI4 T cells were attached. In the simultaneous control experiment where NIT-1 cells were co-cultured with MHC mis-matched human lymphocyte Jurkat cells, mitochondrial membrane potential remained intact. This technique can be used to observe real-time changes in mitochondrial membrane potential in cells under attack of cytotoxic lymphocytes, cytokines, or other cytotoxic reagents.  相似文献   

15.
Liu SQ  Liu LS  Ohno T 《Cytotechnology》1998,26(1):13-21
Human tumor-specific CD4+ cytotoxic T lymphocytes (CTL) were generated against duodenum papilloma cell line TGBC18TKB from HLA type-matched peripheral blood mononuclear cells. Concanavalin A (Con A) immobilized on carrier beads stimulated growth of the CTL in a long-term culture without repeated antigen stimulation, while soluble Con A induced death of the CTL. The CTL exhibited the target-specific cytotoxicity in a more potent manner than those before the long-term culture in the presence of the immobilized Con A. Enhanced expression of the adhesion molecule, CD11b, was observed on the CTL. These results suggest that immobilized Con A will be useful for continuous growth stimulation and large scale expansion of CTL without tumor antigen.  相似文献   

16.
Previous studies have shown that TGF-β acts cooperatively with IL-6 to elicit a high frequency of IL-17-secreting CD4(+) T cells (termed Th17) and an elevated CD8(+)IL-17(+) T cell population (termed Tc17). These CD8(+) cells fail to behave like most cytotoxic T lymphocytes that express IFN-γ and granzyme B, but they exhibit a noncytotoxic phenotype. Although a significant increase in the number of these Tc17 cells was found in tumors, their role and interaction with other cell types remain unclear. In this study, we demonstrate that the presence of CD4(+)CD25(-) T cells, but not the CD4(+)CD25(+) (regulatory T [Treg]) cell population, significantly reduced the elicitation of Tc17 cells, possibly as a result of the induction of apoptotic signals. Importantly, these signals may be derived from soluble mediators, and the addition of anti-IL-2 restored the reduction of Tc17 cells in the presence of CD4(+)CD25(-) T cells. Finally, the elicited Tc17 and Treg cells exhibited a close association in patients with head and neck cancer, indicating that the surrounding Treg cells might maintain the survival of the Tc17 cells. Taken together, these results reveal an intriguing mechanism in which Tc17 cells are controlled by a finely tuned collaboration between the different types of CD4(+) T cells in distinct tumor microenvironments.  相似文献   

17.
人类免疫缺陷病毒(Humanimmunodeficiencyvirus,HIV)附属蛋白Nef、Vpu、Vpr和Vif在病毒复制中起着关键作用,并能被细胞毒性T细胞(CytotoxicTLymphocyte,CTL)识别。然而,对我国HIV感染者体内附属蛋白特异性的CTL应答研究比较少。本研究应用覆盖HIV-1B、C亚型附属蛋白(Nef、Vpu、Vpr和Vif)的142个肽段作为抗原,通过酶联免疫斑点实验(Enzyme-LinkedImmunospot,ELISPOT)检测61例中国HIV/AIDS患者和10例HIV-1血清阴性对照的HIV-1附属蛋白特异性CTL应答。无论对HIV-1B亚型还是HIV-1C亚型附属蛋白都能产生特异性CTL应答,特别是Nef区蛋白的反应频率和累积应答强度都较高(P<0.001),B、C亚型间的应答频率和累积应答强度都无显著差别(P>0.05),其免疫优势区也大致相同。附属蛋白特异性的累积CTL应答强度将近达到总应答的21%。这些结果表明尽管HIV-1附属蛋白的体积小,但它们在诱导特异性的CTL应答中发挥了重要作用,对评价HIV-1免疫应答的幅度和特异性以及研发针对中国人群的HIV疫苗有重要的意义。  相似文献   

18.
Cytotoxic T lymphocyte (CTL)-mediated lysis is accompanied by fragmentation of target cell DNA into an oligonucleosome ladder, a hallmark of apoptosis. Is this a fortuitous coincidence, or could CTL be inducing lysis by activation of the suicide signal? In this report we demonstrate that CTL-mediated target cell death can be blocked with the drug aurintricarboxylic acid (ATA). The abrogation of death correlates with the inhibition of DNA fragmentation. While ATA prevented DNA fragmentation, it failed to significantly alter protein, RNA, or DNA synthesis in the cell lines over the dose range used. In addition, there was no inhibition of cell-cell interaction or granule exocytosis during CTL-mediated killing. ATA also significantly inhibited the cytolysis and DNA fragmentation mediated by isolated cytolytic granules, as well as the granular protein fragmentin. We developed an assay in which target cells could be separated from CTL after binding and programming for lysis. Once they had received the "kiss of death," target cells could be rescued from lysis (as indicated by inhibition of DNA fragmentation and increased target cell viability) by treatment with ATA. These results suggest that ATA blocks target cell death by inhibition of DNA fragmentation, and further, that chromatin degradation is a cause rather than a result of cell death in CTL-mediated lysis.  相似文献   

19.
人类免疫缺陷病毒(Human immunodeficiency virus, HIV)附属蛋白Nef、Vpu、Vpr和Vif 在病毒复制中起着关键作用,并能被细胞毒性T细胞(Cytotoxic T Lymphocyte, CTL)识别.然而,对我国HIV感染者体内附属蛋白特异性的CTL应答研究比较少.本研究应用覆盖HIV-1B、C亚型附属蛋白(Nef、Vpu、Vpr和Vif)的142个肽段作为抗原,通过酶联免疫斑点实验(Enzyme-Linked Immunospot,ELISPOT)检测61例中国HIV/AIDS患者和10例HIV-1血清阴性对照的HIV-1附属蛋白特异性CTL应答.无论对HIV-1B 亚型还是HIV-1C亚型附属蛋白都能产生特异性CTL 应答,特别是Nef区蛋白的反应频率和累积应答强度都较高(P<0.001),B、C亚型间的应答频率和累积应答强度都无显著差别(P>0.05),其免疫优势区也大致相同.附属蛋白特异性的累积CTL应答强度将近达到总应答的21%.这些结果表明尽管HIV-1附属蛋白的体积小,但它们在诱导特异性的CTL应答中发挥了重要作用,对评价HIV-1免疫应答的幅度和特异性以及研发针对中国人群的HIV疫苗有重要的意义.  相似文献   

20.
The immunogenic capacity of herpes simplex virs (HSV)-infected cells and their subcellular membrane fractions was investigated by assessing the anti-HSV cytotoxic T lymphocyte (CTL) response in cultures of spleen lymphocytes from HSV-primed BALB/c mice. Methylchloranthrane-induced fibrosarcoma (Meth A) cells infected with HSV (HSV-Meth A) were fixed either with glutaraldehyde or by heating at 56 C to preserve their immunogenic competence and then used as a stimulator. Microsomes and plasma membranes were prepared from HSV-Meth A and their immunogenic activities were determined. Though the recovery of stimulatory activity in the plasma membrane fraction was half of that in the microsome fraction, the activity in the former was much more stable than in the latter and the plasma membrane fraction proved to be well qualified as an immunogen for anti-HSV CTL induction. Upon purification, the specific activity of the membrane fraction, on the basis of protein concentration, increased 43-fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号