首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The inhibitory activity of (9R,10S,12Z)-9,10-dihydroxy-8-oxooctadecenoic acid and its diacetate, acetonide and methyl ester toward tea pollen tube growth were different, the inhibition by the diacetate being the strongest. Each compound of the fatty acid and its derivatives exhibited more inhibition than its C-9 epimer. The fatty acid and its C-9 epimer showed the same toxicity against HeLa cells.  相似文献   

2.
The 7-hydroxycoumarins, umbelliferone and 4-methylumbelliferone (IC 50 =1.4 and 1.9 μM, respectively) were potent inhibitors of human testes microsomal 17 β -HSD (type 3) enzyme whereas 7-methoxycoumarin, 4-hydroxycoumarin and 7-ethoxycoumarin had little or no inhibitory activity. Analogues of the weak inhibitory triphenylethenes tamoxifen and clomiphene but lacking the basic substituent, were weak inhibitors of the human microsomal enzyme. Inhibitory activity was improved by replacement of the triphenylethene structure with a triphenylmethyl (17, 52.6% inhibition) or phenylpropyl (16, 94.8%, IC 50 =42.1 μM) skeleton. Further studies on tamoxifen using rat testes microsomal 17 β -HSD showed that the inhibition was time-dependent and irreversible but not specifically mechanism-based.  相似文献   

3.
Scarring of cornea, glaucoma, after-cataract and also proliferative vitreoretinopathy(PVR) related tractional retina detachment, age related macular degeneration and diabetic retinopathy etc., which are the major and seriously impair vision diseases in eyes, with various appearance and different therapy method, but maybe they have the similar pathogenesis—fibrosis, and all the above ocular diseases can be regarded as fibrotic disorders. Thus inhibition of the fibrotic process may provide a potentially novel therapeutic approach to the treatment of these ocular diseases mentioned above. Now numerous studies have proved that BMP-7 significantly reversed renal, hepatic, pulmonary fibrosis, including inhibition of Transforming growth factor-β (TGF-β) production, suppression of epithelial-to-mesenchymal transition (EMT), and repair of severely damaged epithelial cells. So it is reasonable to refer that BMP-7 may have the same preventive effect in these ocular fibrotic disorders. A potential clinical therapy can be developed by using the anti-fibrosis effect of BMP-7.  相似文献   

4.
Inhibitory effects on bacterial growth showed that 40% ethanol extract of galangal (rhizome of Alpinia officinarum Hance) can inhibit Staphylococcus aureus, α-Hemolytic streptococcus, β-Hemolytic streptococcus and Streptococcus pneumoniae. β-ketoacyl-ACP reductase (FabG, EC.1.1.1.100) is a key enzyme in type II fatty acid synthase system in bacteria and catalyzes β-ketoacyl-ACP reduction. The galangal extracts inhibited FabG with an IC50 value of only 4.47 ± 0.10 μg/mL and is more potent than other previously published inhibitors. Kinetics studies showed that the inhibition consisted of both reversible and irreversible inhibition. The extracts of galangal inhibit FabG in a competitive pattern against NADPH. So far, no inhibitor has been reported to exhibit irreversible inhibition of FabG, whereas the galangal ethanol extract can inhibit FabG irreversibly. The irreversible inhibition presented two phases. It is probable that the galangal extract inhibit FabG, thereby displaying antibacterial ability.  相似文献   

5.
Cationized ferritin was found to inhibit the lateral mobility of intramembrane proteins in turkey erythrocyte membranes and the activation of adenylate cyclase by the (?)-epinephrine-bound β-adrenergic receptor. It was observed that cationized ferritin has only a small direct effect on the β-receptor and on the adenylate cyclase moiety. It is concluded that the cationized ferritin-induced inhibition of the hormone-dependent cyclase activity results from the inhibition of the lateral mobility of the receptor and therefore a decrease in the bimolecular rate of interaction between the receptor and the enzyme.  相似文献   

6.
Transforming growth factor beta (TGFβ) signaling is linked to the membrane trafficking of TGFβ receptors. The Protein Kinase C (PKC) family of serine/threonine kinases have been implicated in modulating the endocytic processes of various receptors. The present study investigated whether PKC activity plays a role in the trafficking, and signaling of TGFβ receptors, and further explored which PKC isoforms may be responsible for altered TGFβ signaling patterns. Using immunofluorescence microscopy and 125I-TGFβ internalization assays, we show that the pharmacological inhibition of PKC activity alters TGFβ receptor trafficking and delays TGFβ receptor degradation. Consistent with these findings, we demonstrate that PKC inhibition extends TGFβ-dependent Smad2 phosphorylation. Previous studies have shown that PKCζ associates with TGFβ receptors to modulate cell plasticity. We therefore used siRNA directed at the atypical PKC isoforms to investigate if reducing PKCι and PKCζ protein levels would delay TGFβ receptor degradation and extend TGFβ signaling. Our findings suggest that atypical PKC isoforms regulate TGFβ signaling by altering cell surface TGFβ receptor trafficking and degradation.  相似文献   

7.
Yan H  Zhu S  Song C  Liu N  Kang J 《Cellular signalling》2012,24(4):961-968
Aberrant expression of mitotic checkpoint genes compromises mitotic checkpoint, leads to chromosome instability and tumorigenesis. However, the cell signals that control mitotic checkpoint gene expression have not been reported so far. In the present study we show that, in human breast cancer cells, chemical inhibition of Bone morphogenetic proteins (BMPs), but not Transforming Growth Factor-β (TGF-β), abrogates the mitotic arrest induced by nocodazole. Protein expression analysis reveals that inhibition of BMP signaling dramatically down regulates protein levels of mitotic checkpoint components BUB3, Hec1, TTK and MAD2, but inhibition of TGF-β has relatively minor effect on the expression of these proteins. Activation of BMP signaling specifically up regulates BUB3, and activation of Activin A signaling globally down regulates these proteins level. Furthermore, overexpressing MAD2, TTK, BUB3 or Hec1 significantly rescues the mitotic arrest defect caused by BMP inhibition. Our results demonstrated for the first time that TGF-β family cytokines are cellular signals regulating mitotic checkpoint and perturbations in intrinsic BMP signaling could lead to suppression of mitotic checkpoint signaling by downregulating key checkpoint proteins. The results suggest a possible mechanism by which dysregulation of TGF-β signaling causes mitotic checkpoint defects and drives tumorigenesis. The finding also provides a potential and more specific strategy for cancer prevention by targeting BMP and mitotic checkpoint connection.  相似文献   

8.
Sen-itiroh Hakomori 《FEBS letters》2010,584(9):1901-41679
Glycosphingolipids (GSLs) GM3 (NeuAcα3Galβ4Glcβ1Cer) and GM2 (GalNAcβ4[NeuAcα3]Galβ4Glcβ1Cer) inhibit (i) cell growth through inhibition of tyrosine kinase associated with growth factor receptor (GFR), (ii) cell adhesion/motility through inhibition of integrin-dependent signaling via Src kinases, or (iii) both cell growth and motility by blocking “cross-talk” between integrins and GFRs. These inhibitory effects are enhanced when GM3 or GM2 are in complex with specific tetraspanins (TSPs) (CD9, CD81, CD82). Processes (i)-(iii) occur through specific organization of GSLs with key molecules (TSPs, caveolins, GFRs, integrins) in the glycosynaptic microdomain. Some of these processes are shared with epithelial-mesenchymal transition induced by TGFβ or under hypoxia, particularly that associated with cancer progression.  相似文献   

9.
The inhibition of steroidogenic cytochrome P450 enzymes has been shown to play a central role in the management of life-threatening diseases such as cancer, and indeed potent inhibitors of CYP19 (aromatase) and CYP17 (17α hydroxylase/17,20 lyase) are currently used for the treatment of breast, ovarian and prostate cancer. In the last few decades CYP11B1 (11-β-hydroxylase) and CYP11B2 (aldosterone synthase), key enzymes in the biosynthesis of cortisol and aldosterone, respectively, have been also investigated as targets for the identification of new potent and selective agents for the treatment of Cushing's syndrome, impaired wound healing and cardiovascular diseases.In an effort to improve activity and synthetic feasibility of our different series of xanthone-based CYP11B1 and CYP11B2 inhibitors, a small series of imidazolylmethylbenzophenone-based compounds, previously reported as CYP19 inhibitors, was also tested on these new targets, in order to explore the role of a more flexible scaffold for the inhibition of CYP11B1 and -B2 isoforms. Compound 3 proved to be very potent and selective towards CYP11B1, and was thus selected for further optimization via appropriate decoration of the scaffold, leading to new potent 4′-substituted derivatives. In this second series, 4 and 8, carrying a methoxy group and a phenyl ring, respectively, proved to be low-nanomolar inhibitors of CYP11B1, despite a slight decrease in selectivity against CYP11B2. Moreover, unlike the benzophenones of the first series, the 4′-substituted derivatives also proved to be selective for CYP11B enzymes, showing very weak inhibition of CYP19 and CYP17.Notably, the promising result of a preliminary scratch test performed on compound 8 confirmed the potential of this compound as a wound-healing promoter.  相似文献   

10.
A comprehensive set of 3-phenylcoumarin analogues with polar substituents was synthesised for blocking oestradiol synthesis by 17-β-hydroxysteroid dehydrogenase 1 (HSD1) in the latter part of the sulphatase pathway. Five analogues produced ≥62% HSD1 inhibition at 5?µM and, furthermore, three of them produced ≥68% inhibition at 1?µM. A docking-based structure-activity relationship analysis was done to determine the molecular basis of the inhibition and the cross-reactivity of the analogues was tested against oestrogen receptor, aromatase, cytochrome P450 1A2, and monoamine oxidases. Most of the analogues are only modestly active with 17-β-hydroxysteroid dehydrogenase 2 – a requirement for lowering effective oestradiol levels in vivo. Moreover, the analysis led to the synthesis and discovery of 3-imidazolecoumarin as a potent aromatase inhibitor. In short, coumarin core can be tailored with specific ring and polar moiety substitutions to block either the sulphatase pathway or the aromatase pathway for treating breast cancer and endometriosis.  相似文献   

11.
J M Stein  B R Martin 《FEBS letters》1984,165(2):290-292
The effect of carbacyclin, a chemically stable analogue of prostacyclin, on the activity of adenylate cyclase in platelet membranes was measured, and compared with the effect of PGE1. When GTP was added in concentrations up to 10 microM the activation of adenylate cyclase by carbacyclin was increased, whereas higher concentrations of GTP were inhibitory. The addition of a non-hydrolysable analogue of GDP, guanosine 5'-[beta-thio]diphosphate (GDP[beta S] ) resulted in a dose-dependent inhibition of adenylate cyclase activation by carbacyclin; this inhibition was relieved by adding increased amounts of GTP.  相似文献   

12.
Cisplatin remains the most effective therapy for non-small cell lung cancer (NSCLC). We previously have found cisplatin-resistant lung cancer cells (A549CisR and H157CisR) were more resistant to natural killer (NK) cell-mediated cytotoxicity than parental cells. We also discovered that fatty acid synthase (FASN) levels in cisplatin-resistant cells were significantly higher than in parental cells. To reveal whether a link exists between the up-regulated FASN levels and higher resistance to NK cell cytotoxicity, we performed inhibition studies using a FASN inhibitor and applied the FASN knockdown approach. In both approaches, we found that the FASN inhibition/knockdown significantly increased the susceptibility of cisplatin-resistant cells to NK cell cytotoxicity. We further found such decreased susceptibility was associated with an increased programmed death receptor ligand (PD-L1) level in cisplatin-resistant cells. In mechanisms studies, TGF-β1 was found to be the FASN downstream signaling molecule that was responsible for modulating the PD-L1 levels in cisplatin-resistant cells. Accordingly, TGF-β1 inhibition resulted in significantly increased susceptibility of cisplatin-resistant cells to NK cell cytotoxicity. We suggest that the inhibition of FASN-TGFβ1-PD-L1 axis may improve the efficacy of immunotherapy in treating cisplatin-resistant lung cancer.  相似文献   

13.
Some novel inhibitors based on the (benzo[d]thiazol-2-yl)-1-phenylmethanimine derivatives were designed to reduce the aggregation process in Alzheimer's disease. These structures seem to mimic stilbene-like scaffold, while the benzothiazole moiety “locks” the thioflavin T binding site. Other inhibitors were designed based on 2-((benzo[d]thiazol-2-ylimino)methyl)-5-(benzyloxy)-1-methylpyridin-4(H)-one derivatives. Benzo[d]thiazol-2-amine derivatives were prepared by the reaction of aniline derivatives with ammonium thiocyanate in the presence of bromine/acetic acid. Then, the reaction of amines with benzaldehyde derivatives and 5-(benzyloxy)-1-methyl-4-oxo-1,4-dihydropyridine-2-carbaldehyde gave the desired compounds. The plate reader-based fibrillation assay was done to evaluate the inhibition of Aβ aggregation. Also, molecular dynamic simulation was carried out to clarify the interaction manner of the designed compounds with Aβ formation. The biological evaluation proved 5a and 7e as the best inhibitor of the Aβ aggregation. compound 5a in the concentration of 50 μM inhibited Aβ fibril formation better than 7e . MD simulation elucidated that the Aβ aggregation inhibitors in different concentrations represented different binding conformations throughout the entire or in one area of Aβ. MD showed the ligands in lower concentrations accumulate in an area of Aβ aggregations and separate one fibril from the aggregated Aβ. On the contrary, in higher concentrations, the ligands tend to be located through the entire Aβ.  相似文献   

14.
Studies have been carried out in the turkey erythrocyte to examine: (1) the influence of external K+ concentration on both [3H]ouabain binding and the sensitivity of potassium influx to inhibition by ouabain and (2) the quantitative relation between β-adrenergic receptor site occupancy, agonist-directed cyclic AMP generation and potassium influx rate. Both [3H]ouabain binding and the ability of ouabain to inhibit potassium influx are markedly reduced at increasing external K+ concentrations, and at each K+ concentration the concentrations of ouabain required for half-maximal binding to the erythrocyte membrane and for half-maximal inhibition of potassium influx are identical. Both basal and isoproterenol-stimulated potassium influx rise with increasing external K+ concentrations. In contrast to basal potassium influx, which is 50–70% inhibitable by ouabain, the isoproterenol-stimulated component of potassium influx is entirely insensitive to ouabain. At all concentrations of K+, inhibition of basal potassium influx by ouabain is linear with ouabain binding, indicating that the rate of transport per unoccupied ouabain binding site is unaffected by simultaneous occupancy of other sites by ouabain. Similarly, the rate of isoproterenol-stimulated cyclic AMP synthesis is directly proportional to β-adrenergic receptor occupancy over the entire concentration-response relationship for isoproterenol, showing that at all levels of occupancy β-adrenergic receptor sites function independently of each other.Analysis of the relation of catecholamine-dependent potassium transport to the number of β-adrenergic receptor sites occupied indicates an extremely sensitive physiological system, in which 50%-maximal stimulation of potassium transport is achieved at less than 3% receptor occupancy, corresponding to fewer than ten occupied receptors per cell.  相似文献   

15.
Aiming at the development of potent inhibitors of β-glucosidases, a small library of galactonoamidines and one arabinoamidine derived in analogy were studied as inhibitors of sweet almond β-glucosidase. The five-membered glycon in arabinoamidine was shown to interact with the proton donor in the active site of the retaining enzyme, but not with the nucleophile. By contrast, the corresponding galactonoamidine with a six-membered glycon and identical aglycon interacts with both hydrolysis-promoting amino acids in the active site and inhibits the enzymatic hydrolysis of β-glucosides in the low nanomolar concentration range. While both inhibitors are competitive, their inhibition ability is more than 37,000-fold different.  相似文献   

16.
17.
The antibiotic cerulenin inhibited the incorporation of 14C-acetyl-CoA by 67% at a concentration of 9 × 10?6 M but not that of 14C-HMG-CoA into the non-saponifiable fraction in a cell-free extract of Saccharomyces cerevisiae. Cerulenin markedly inhibited the activity of partially purified HMG-CoA synthase. No inhibition of acetoacetyl-CoA thiolase activity was observed in the same preparation of HMG-CoA synthase. Therefore, cerulenin inhibition of overall sterol synthesis may be accounted for by the specific inhibition of HMG-CoA synthase activity.  相似文献   

18.
Eight kinds of phenolic acid conjugated chitooligosaccharides (COSs) were synthesized using hydroxyl benzoic acid and hydroxyl cinnamic acid. These phenolic acid conjugated-COSs with different substitution groups, including p-hydroxyl, 3,4-dihydroxyl, 3-methoxyl-4-hydroxyl and 3,5-dimethoxyl-4-hydroxy groups, were evaluated for their inhibitory activities against β-site amyloid precursor protein (APP)-cleaving enzyme (BACE) and inhibited BACE with a ratio of 50.8%, 74.8%, 62.1%, 64.8% and 42.6%, respectively at the concentration of 1,000 μg/mL. BACE is a critical component to reduce the levels of Aβ amyloid peptide in Alzheimer’s disease (AD) which is based on the amyloid cascade theory in the brain, as this protease initiates the first step in Aβ production. Among them, Caffeic acid conjugated-COS (CFA-COS) was further analysed to determine mode of inhibition of BACE and it showed non-competitive inhibition. Hence in this study, we suggest that CFA-COS derivatives have potential to be used as novel BACE inhibitors to reduce the risk of AD.  相似文献   

19.
The biological characteristics of bladder cancer include enhanced invasion and migration, which are the main causes of death in patients. Starvation is a typical feature of the bladder cancer microenvironment and can induce autophagy. Autophagy has an important relationship with the invasion and migration of tumors. However, the role of autophagy in the invasion and migration of bladder cancer cells remains unclear. Hence, the aim of the current study was to clarify this role and underlying mechanism. In this study, we found that starvation enhanced the epithelial-mesenchymal transition (EMT)-mediated invasion and migration of T24 and 5637 cells while inducing autophagy. The inhibition of autophagy with chloroquine (CQ) or 3-methyladenine (3MA) decreased EMT-mediated invasion and migration. In addition, the expression of transforming growth factor 1 (TGF-β1) and phosphorylated Smad3 (p-Smad3) increased after starvation. The inhibition of autophagy with CQ or 3MA also decreased the expression of TGF-β1 and p-Smad3. The inhibitor of TGF-β receptor sb431542 also inhibited the invasion, migration, and EMT of T24 and 5637 cells during starvation. Furthermore, recombinant TGF-β1 induced autophagy and inhibition of the TGF-β/Smad signaling pathway with sb431542 suppressed autophagy. In summary, our results suggested that autophagy promotes the invasion and migration of bladder cancer cells by inducing EMT through the TGF-β1/Smad3 signaling pathway. Moreover, autophagy and TGF-β1 can form a positive feedback loop to synergistically promote invasion and migration. Thus, our findings may provide a theoretical basis for the prevention of invasion and migration in bladder cancer.  相似文献   

20.
已有的研究结果表明,肝素可以作为β2-整合素(Mac-1)的配体抑制炎症过程中Mac-1介导的嗜中性粒细胞与血管内皮细胞的黏附.通过选择性化学修饰方法制备了具有低抗凝血活性的高碘酸氧化-硼氢化钠还原肝素(RO-肝素),系统地研究了它对Mac-1介导的嗜中性粒细胞黏附的抑制作用.结果表明,显著失去抗凝血活性的RO-肝素仍能有效地抑制Mac-1介导的嗜中性粒细胞与ICAM-1重组蛋白、转染ICAM-1 cDNA的COS-7细胞和人脐静脉内皮细胞黏附.为深入阐明拮抗Mac-1介导的白细胞黏附的分子机制和筛选抗炎症药物提供了有价值的实验证据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号