首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of microelements in the Linsmaier-Skoog (LS) medium on betacyanin production was investigated in suspension cultures of table beet (Beta vulgaris L.). Removing zinc from the medium resulted in a high betacyanin content of the cells, the betacyanin content of the cells decreasing with increasing zinc concentration in the medium. The betacyanin content of cells cultured in the medium without zinc was twice as high as that in the medium containing 0.03 mM of zinc. In the revised LS medium without zinc, the maximum betacyanin yield was obtained of 590 mg/l from a 21-day culture.  相似文献   

2.
The effect of a revised Linsmaier-Skoog (LS) medium on betacyanin production was investigated in suspension cultures of table beet (Beta vulgaris L.). The effects of a high iron concentration and low concentration of zinc on betacyanin production were not cumulative. The composition of the new revised medium for high betacyanin production was established by reducing the concentration of inorganic nitrogen (30 mM), modifying the ratio of ammonium to nitrate (1:14), reducing the concentration of zinc (0.0003 mM), and removing copper and cobalt. The revised LS medium enabled the maximum betacyanin yield of 550 mg/l to be obtained from a 14-day culture. This medium promoted the betacyanin production in three types of cell line differing in the betacyanin productivity. The betacyanin productivity (40 mg/l x day) was higher than that quoted in any other previous reports.  相似文献   

3.
The effect of a revised Linsmaier-Skoog (LS) medium on betacyanin production was investigated in suspension cultures of table beet (Beta vulgaris L.). The effects of a high iron concentration and low concentration of zinc on betacyanin production were not cumulative. The composition of the new revised medium for high betacyanin production was established by reducing the concentration of inorganic nitrogen (30 mM), modifying the ratio of ammonium to nitrate (1:14), reducing the concentration of zinc (0.0003 mM), and removing copper and cobalt. The revised LS medium enabled the maximum betacyanin yield of 550 mg/l to be obtained from a 14-day culture. This medium promoted the betacyanin production in three types of cell line differing in the betacyanin productivity. The betacyanin productivity (40 mg/l?day) was higher than that quoted in any other previous reports.  相似文献   

4.
A cell suspension culture of table beet (Beta vulgaris L.) was established for efficient betacyanin production from violet callus induced from the hypocotyls of aseptic seedlings. This suspension culture produced large amounts of betacyanins. The betacyanin content increased with increasing cell growth during the log phase. Reducing the total nitrogen concentration (30 mM) and modifying the ratio of ammonium to nitrate (1:14) resulted in an increased betacyanin content. Supplementation of Fe2+ to the LS medium also promoted betacyanin production. The maximal betacyanin yield was achieved with a 2 mM Fe2+ concentration. Combining these conditions, we established a revised LS medium to improve betacyanin productivity (250 mg/l for a 14-day culture).  相似文献   

5.
2,4-Dichlorophenoxyacetic acid (2,4-D) strongly promoted betacyanin accumulation in suspension cultures of Phytolacca americana L. The betacyanin accumulation attained a maximum at 5 μ M 2,4-D, when betacyanin content per cell reached 252% as compared to the control (2,4-D free). 2,4-D elevated the level of free tyrosine, which is the precursor of betacyanin. The addition of 1 m M tyrosine to the medium partially reversed the reduction of betacyanin accumulation caused by the removal of 2,4-D. Tracer experiments using labelled tyrosine showed that 2,4-D activated the biosynthetic pathway from tyrosine to betacyanin. These results indicate that a sufficient supply of tyrosine and the activation of biosynthesis of betacyanin from tyrosine by 2,4-D elevate the level of betacyanin.  相似文献   

6.
Betacyanin production in suspension-cultured cells of Portulaca was significantly enhanced by both abiotic and biotic elicitors. Betacyanin levels increased 1.3 and 1.5-fold over the controls in the presence of two abiotic elicitors (20 mumol/L CuSO4 and 100 mumol/L FeEDTA) and increased 1.8 and 1.6-fold in the presence of two biotic elicitors (0.5 mg/L beta-glucan and 0.5 mg/L chitosan). Maximum betacyanin synthesis with the two most effective elicitors was obtained when cultures were treated on day 1 and day 0 by beta-glucan and FeEDTA, respectively. A concentration-dependent response was exhibited by cultures treated with exogenous methyl jasmonate (MJ). MJ alone at 0.1 mumol/L caused a 2.6-fold increase in betacyanin synthesis when administered to the suspension culture on day 3. However, no additive effect on betacyanin accumulation was observed in treatments, which combined MJ and beta-glucan or FeEDTA. Treatment with ibuprofen (IB), an inhibitor of jasmonate biosynthesis, reduced the level of betacyanin in cells cultured in standard medium at all concentrations tested (25, 50, 100 mumol/L). The effect of IB on betacyanin synthesis in the cells treated with MJ or beta-glucan, however, differed with the IB concentration applied. The two higher concentrations (50 and 100 mumol/L) of IB significantly reduced the betacyanin content while the lower concentration (25 mumol/L) did not show an adverse effect on the betacyanin enhancement triggered by MJ or beta-glucan. Our findings suggest that, in suspension-cultured cells of Portulaca, an MJ-mediated signal transduction pathway prominently exists in betacyanin synthesis. This pathway seems to act antagonistically towards beta-glucan-mediated signaling. As far as we know this is the first report on the elevation of betacyanin level by jasmonate or other elicitors in cell suspension cultures.  相似文献   

7.
In suspension cultures of Vitis sp., maximal accumulation ofanthocyanin was observed during the stationary phase. Accumulationof anthocyanin occurred in parallel with the cessation of celldivision under conditions such as a reduction of the concentrationof phosphate in the medium, or the presence of aphidicolin,an inhibitor of DNA synthesis. By contrast, in suspension culturesof Phytolacca americana, aphidicolin inhibited the accumulationof betacyanin and cell division. When aphidicolin was removedfrom cells by washing, partially synchronized division of cellswas induced and the accumulation of betacyanin also occurred,in conjunction with cell division. In the absence of phosphatefrom the medium, cell division did not occur and accumulationof betacyanin also ceased. Readdition of phosphate to cellsstarved for phosphate induced both cell division and the accumulationof betacyanin. These results indicate a positive correlationbetween the accumulation of betacyanin and cell division inPhytolacca which contrasts with a negative correlation betweenthe accumulation of anthocyanin and cell division in Vitis. (Received April 17, 1989; Accepted December 23, 1989)  相似文献   

8.
A comparison of the hydrogen peroxide (H2O2) content, proline and betacyanin concentration and activities of some antioxidant enzymes (catalase, superoxide dismutase, guaiacol and ascorbate peroxidases) was made in Mesembryanthemum crystallinum L. calli differing in rhizogenic potential. Callus was induced from hypocotyls of 10-day-old seedlings on a medium containing 1?mg?l?1 2,4-dichlorophenoxyacetic acid and 0.2?mg?l?1 kinetin, which was either supplemented with 40?mM NaCl (CIM-NaCl medium) or did not contain any salt (CIM medium). The callus obtained on CIM-NaCl was rhizogenic, whereas the callus induced on the medium without salt was non-rhizogenic throughout the culture. The rhizogenic callus differed from the non-rhizogenic callus in lower betacyanin and H2O2 content, but the rhizogenic callus displayed a higher proline level. The activity of H2O2 scavenging enzymes, such as catalase (CAT), ascorbate peroxidase (APX) and guaiacol peroxidase (POD), was markedly higher in the rhizogenic callus than in the non-rhizogenic callus, but the total activity of superoxide dismutase (SOD) was higher in the non-rhizogenic callus than in the rhizogenic callus. Aminotriazole (CAT inhibitor) and diethyldithiocarbamate (SOD inhibitor) were added solely to the CIM and CIM-NaCl media to manipulate the concentration of reactive oxygen species (ROS) in the cultured tissues. Both CAT and SOD inhibitors brought about an increase in H2O2 content in calli cultured on CIM-NaCl and the loss of rhizogenic potential. Conversely, the addition of inhibitors to the medium without salt led to a decrease in H2O2 content. This corresponded with a significant decrease in the endogenous concentration of betacyanins, but did not change the lack of rhizogenic ability.  相似文献   

9.
Suaeda salsa calluses cultured in darkness for 28 d were transferred to Murashige and Skoog (MS) media containing various growth regulators under white light conditions for 10 d to investigate cell growth, betacyanin accumulation, and expression of dopa-4,5-dioxygenase (DODA). Callus growth was markedly promoted when 0.2 mg·L−1 2,4-D and 0.5 mg·L−1 6-BA were added to the MS medium. Surprisingly, of the auxins tested, IAA had no effect on betacyanin content, but 2,4-D strongly decreased betacyanin content. Betacyanin content was positively correlated with 6-BA concentrations in the range of 0.1–2.0 mg·L−1. DODA mRNA levels were consistent with the response of betacyanin content to exogenous growth regulators. These results suggest that betacyanin metabolism in S. salsa calluses is regulated under white light conditions by growth regulators through the regulation of genes such as DODA that are involved in betacyanin synthesis.  相似文献   

10.
The effect of external zinc supplementation (10 and 35 micromol) on cell proliferation and mitogenic signaling of Hep-2 tumor cells was examined during 72 h of treatment. Zinc levels were manipulated by using zinc-free cultivation medium with or without addition of zinc ions. Proliferation of Hep-2 cells exposed to zinc-free medium decreased in a time-dependent manner and corresponded to decreasing intracellular zinc content. Hep-2 cells accumulated in G(0)/G(1) phase, showed reduced abundance of AKT and NF-kappaB as well as of anti-apoptotic Bcl-2 and Bcl-XL proteins. Zinc supplied to Hep-2 cells maintained in the presence of zinc-free medium stimulated their proliferation as well as mitogenic signaling which paralleled increasing intracellular zinc content. In zinc-exposed Hep-2 cells, several changes in various mitogenic signaling pathways were noted such as enhanced expression of p53, AKT and MAP kinases, NF-kappaB and increased DNA binding of AP-1 family. Also, supplementation with zinc of Hep-2 cells resulted in the suppression of key apoptotic molecules such as Bax protein and increased expression of anti-apoptotic Bcl-2 and Bcl-XL proteins. Since only the highest supplied zinc concentration (35 micromol) induced oxidative stress, it is reasoned that the observed activation of pro-survival signaling occurs both directly and indirectly. These data show that zinc may stimulate growth and proliferation of some tumor cells by a combination of internal mechanisms with a varying contribution of external signaling pathways too.  相似文献   

11.
Summary An epithelial cell line, LS123, was established in 1974 from the second in a series of three primary colonic tumors resected from a Caucasian female. The cell line is aneuploid, releases low concentrations of carcinoembryonic antigen (CEA), fails to grow progressively in nude mice, and forms colonies only in enriched semisolid medium developed for tumor stem cells. LS123 cells grow on confluent cell monolayers and in either low serum or serum-free medium. In the chick embryonic skin assay, LS123 cells grew as a well-differentiated abnormal colonic epithelium with little mitotic activity but with some indication of invasion. On floating collagen gels LS123 cells formed a one to three-cell-layer-thick undifferentiated epithelial sheet. The apparent low invasiveness of the cells of this line is supported by the patient's history of three primary colon tumors without systemic metastases during the past 30 yr. Therefore, although LS123 cells possess several properties associated with neoplasia, they have little invasive potential. Thus, LS123 cells may represent an important model for the study of human colon cancer. Presented in part at the 33rd Annual Meeting of the Tissue Culture Association, San Diego, CA, June 6–10, 1982. The work has been partially supported by U.S. Public Health Service Grants CA23871 (L. P. R.), CA24024 and RCDAK04-CA00579 (B. H. T.), and CA27124 and CA22370 (B. D. K.); the latter was awarded through the National Large Bowel Cancer Project.  相似文献   

12.
Production of berberine could be induced by adding 6-benzylaminopurine (BAP) to Thalictrum minus cells, cultured in suspension in a medium containing 2,4-dichlorophenoxyacetic acid (2,4-D), early in the growth cycle. In the presence of BAP, the precursor, L-tyrosine, was rapidly converted into berberine which was then released into the medium, whereas substantial amounts of the intermediates, tyramine and dopamine, accumulated in non-berberine-producing cells grown in the same 2,4-D-containing medium without BAP. These results suggest that BAP activated enzymatic reactions subsequent to the formation of the amines in the biosynthesis of berberine.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - BAP 6-benzylaminopurine - NAA 1-naphthaleneacetic acid - IAP 6-isopentenylaminopurine - LS medium Linsmaier-Skoog medium - Growth medium LS medium containing 10-6 M 2,4-D  相似文献   

13.
In suspension cultures of Phytolacca americana , betacyanin accumulation was reduced when cell division was inhibited by treatment with various inhibitors of DNA synthesis or anti-microtubule drugs. Aphidicolin (APC), an inhibitor of DNA synthesis, reduced the incorporation of radioactivity from labeled tyrosine into betacyanin, but the incorporation of radioactivity from labeled 3,4-dihydroxyphenylalanine (DOPA) into betacyanin was not affected by similar treatments. Propyzamide, another anti-microtubule drug, reduced incorporation of radioactivity from tyrosine and DOPA into betacyanin. However, the rate of incorporation from DOPA was higher than that from tyrosine. The results suggest that inhibition of betacyanin accumulation in Phytolacca americana cells by APC and propyzamide is due to suppression of the reaction converting tyrosine to DOPA, which may be closely related to cell division.  相似文献   

14.
Summary Calli were induced from the crown of seedlings or lateral bud of young spears of Asparagus officinalis L. on Linsmaier and Skoog's (LS) solid-medium supplemented with 5 M 2,4-dichlorophenoxyacetic acid (2,4-D). Embryogenic callus was selected from induced calli and proliferated in LS liquid medium supplemented with 5 M 2,4-D. Non-vitrified somatic embryos were formed and efficiently developed into club-shaped embryos in LS hormone-free medium with 1 % gelrite in a culture vessel capped with an aseptic ventilative filter. Non-vitrified club-shaped embryos developed into normal plants when transferred to half-strength LS medium without hormones, and 0.8 % agar. Carbon dioxide concentration and moisture content inside the culture vessels were measured, and their effect on embryo development is discussed.  相似文献   

15.
Repeated-batch cultures of strawberry cells (Fragaria ananassa cv. Shikinari) subjected to four medium-shift procedures (constant LS medium, constant B5 medium, alternation between LS and B5 starting from LS and alternation between LS and B5 starting from B5) were investigated for the enhanced anthocyanin productivity. To determine the optimum period for repeated batch cultures, two medium-shift periods of 9 and 14 days were studied, which represent the end of the exponential growth phase and the stationary phase. By comparison with the corresponding batch cultures, higher anthocyanin productivity was achieved for all the repeated-batch cultures at a 9-day medium-shift period. The average anthocyanin productivity was enhanced 1.7- and 1.76-fold by repeated-batch cultures in constant LS and constant B5 medium at a 9-day shift period for 45 days, respectively. No further improvement was observed when the medium was alternated between LS (the growth medium) and B5 (the production medium). Anthocyanin production was unstable at a 14-day shift period regardless of the medium-shift procedures. The results show that it is feasible to improve anthocyanin production by a repeated-batch culture of strawberry cells.  相似文献   

16.
The role of phyto chrome and flavins in blue light induction of betacyanin formation was studied in etiolated, three-day-old Amaranthus caudatus L. seedlings, using the criterion of far-red reversibility and exogenously applied riboflavin and KCN. The effect of riboflavin was studied using high fluence rate blue light (42.7 :nmol m−2s−1nm−1 at 450 nm). When present in the incubation medium during illumination, riboflavin promoted the far-red reversibility with short light treatments and suppressed the inductive action of continuous illumiaation. If added after light treatments, it promoted betacyanin formation. The filtration of blue light through the riboflavin solution caused profound changes in light quality without affecting the far-red reversibility after 30 mm illumination. The effect of 1 mM KCN was tested with 70'% lower fluence of blue light. Cyanide caused the suppression of the inductive effect with 5 min blue light, which was accompanied by an enhancement of betacyanin induction by the terminal far-red light pulse. With 30 min blue light, however, it caused the appearance of far-red reversibility. The inductive effect of continuous blue illumination was slightly promoted by this Inhibitor. These results demonstrate that the effect of blue light on the pbyto chrome system is complex, whereas the physiological (inductive) action of the flavin triplet state is limited to low fluence, short blue light treatments.  相似文献   

17.
Effect of fenitrothion (phosphorothioic acid, 0,0-dimethyl 0-4-nitro-m-tolyl ester), an organophosphorous insecticide, on membrane permeability employing the leakage of betacyanin and electrolytes as the criteria were studied in beet root(Beta vulgaris) discs. The leakage of both betacyanin and electrolytes increased with increasing concentrations (10–150 ppm) of fenitrothion in the incubation medium. At 0.33 mM the increase in electrolyte leakage was approximately linear for the first 6h, while the increase in betacyanin leakage started with a lag of about 2 h. Long term incubation (24 h) showed a biphasic nature (in the semilog plot) for the increase in betacyanin leakage, while the increase in electrolyte leakage appeared more complex. In the control sample, the Arrhenius plots (25–50°C) of leakage showed a break at 40°C. In treated samples no break was observed, but the slope decreased (for both electrolyte and betacyanin leakage) as compared to the respective slopes in the control in the temperature region greater than 40°C. The results are discussed in terms of the possible effect of the insecticide on the active transport in plant membranes  相似文献   

18.
To analyze the effects of high concentrations of zinc ions on oxidative stress protection, we developed an original model of zinc-resistant HeLa cells (HZR), by using a 200 microM zinc sulfate-supplemented medium. Resistant cells specifically accumulate high zinc levels in intracellular vesicles. These resistant cells also exhibit high expression of metallothioneins (MT), mainly located in the cytoplasm. Exposure of HZR to Zn-depleted medium for 3 or 7 d decreases the intracellular zinc content, but only slightly reduces MT levels of resistant cells. No changes of the intracellular redox status were detected, but zinc resistance enhanced H2O2-mediated cytotoxicity. Conversely, zinc-depleted resistant cells were protected against H2O2-induced cell death. Basal- and oxidant-induced DNA damage was increased in zinc resistant cells. Moreover, measurement of DNA damage on zinc-depleted resistant cells suggests that cytoplasmic metal-free MT ensures an efficient protection against oxidative DNA damage, while Zn-MT does not. This newly developed Zn-resistant HeLa model demonstrates that high intracellular concentrations of zinc enhance oxidative DNA damage and subsequent cell death. Effective protection against oxidative damage is provided by metallothionein under nonsaturating zinc conditions. Thus, induction of MT by zinc may mediate the main cellular protective effect of zinc against oxidative injury.  相似文献   

19.
The effect of zinc on lipid peroxidation initiated by either ferric-nitrilotriacetate, t-butyl hydroperoxide, or 3-methylindole was studied using primary monolayer cultures of rat liver parenchymal cells. The malondialdehyde content of the cells and culture medium was used to estimate the extent of lipid peroxidation. As the zinc concentration of the culture medium was increased from 1 to 48 microM, peroxidation was diminished. Cellular zinc and metallothionein levels were proportionally increased by supplemental zinc. Zinc supplementation of the medium inhibited NADPH-cytochrome c reductase activity and stimulated glutathione peroxidase activity. The uptake of iron into the hepatocytes was significantly reduced as the level of zinc was raised, suggesting that zinc antagonizes uptake of chelated iron into isolated hepatocytes and in this way blocks iron-induced peroxidation. Furthermore, induction of metallothionein synthesis by zinc may contribute to the reduction in free radicals. Spectra from electron spin resonance studies, using phenylbutylnitrone as a spin-trapping reagent, demonstrated that free radical production was inversely related to the zinc concentration of the culture medium. Spin trap data suggest that metallothionein added to lysed cells in vitro decreases free radical production. Studies using the spin trap, 3,3,5,5-tetramethylpyrroline-N-oxide indicated that cumulatively the predominant radical present in the cultures was a phenyl radical with hydroperoxide or methylindole. Collectively, our data demonstrate that zinc inhibits free radical production and lipid peroxidation in cultured hepatocytes. The mode of action of zinc could occur via free radical scavenging by zinc-induced metallothionein and/or by processes related to cytochrome P-450 and glutathione peroxidase, since these were also found to be sensitive to zinc supplementation levels of the culture medium.  相似文献   

20.
Physiological and structural changes in cells of Synechocystis aquatilis f. aquatilis acclimated to grow in the presence of high zinc levels (2.20–3.30 mg·L?1) were investigated. Growth of these cells showed a decreased specific growth rate and final yield of about 60% and 50%, respectively, of the values found for cells grown in the presence of 0.21 mg zinc·L?1 (control culture). The higher the zinc concentration in the culture medium, the more pronounced the reduction in the chl a content. Regardless of zinc concentration, S. aquatilis possessed three distinct carotenoids. A decrease in carotenoid content accompanied the decrease of chl a, and the proportions of the pigments to each other were not affected by zinc. The photosynthetic performance of cells cultured in the presence of high zinc levels showed a decline in both the apparent photosynthetic efficiency and the photosynthetic maximal rate. In these cells the PSII reaction centers became partially closed, and the electron transport activity around PSII and PSI was reduced to 61% and 38% of the control values, respectively, which may indicate an altered PSII/PSI stoichiometry. In addition, electron micrographs revealed a reduced amount of thylakoid membranes, indicating that acclimation to high zinc levels led to a decrease in the overall number of photosynthetic units. On the other hand, light microscopic observation of negative‐stained cells revealed the presence of a thick mucilaginous layer surrounding the high zinc‐acclimated cells. This extracellular material could retain high amounts of metal ions from the medium, thus providing the Synechocystis cells a mechanism to circumvent toxic levels of zinc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号