首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L-Tartrate in wines and grapes was enzymatically quantified by using the secondary activity of D-malate dehydrogenase (D-MDH). NADH formed by the D-MDH reaction was monitored spectrophotometrically. Under the optimal conditions, L-tartrate (a 1.0 mM sample solution) was fully oxidized by D-MDH in 30 min. A linear relationship was obtained between the absorbance difference and the L-tartrate concentration in the range of a 0.02-1.0 mM sample solution with a correlation coefficient of 0.9991. The relative standard deviation from ten measurements was 1.71% at the 1.0 mM sample solution level. The proposed method was compared with HPLC, and the values determined by both methods were in good agreement.  相似文献   

2.
D-Galacturonic acid reductase, a key enzyme in ascorbate biosynthesis, was purified to homogeneity from Euglena gracilis. The enzyme was a monomer with a molecular mass of 38–39 kDa, as judged by SDS–PAGE and gel filtration. Apparently it utilized NADPH with a Km value of 62.5±4.5 μM and uronic acids, such as D-galacturonic acid (Km=3.79±0.5 mM) and D-glucuronic acid (Km=4.67±0.6 mM). It failed to catalyze the reverse reaction with L-galactonic acid and NADP+. The optimal pH for the reduction of D-galacturonic acid was 7.2. The enzyme was activated 45.6% by 0.1 mM H2O2, suggesting that enzyme activity is regulated by cellular redox status. No feedback regulation of the enzyme activity by L-galactono-1,4-lactone or ascorbate was observed. N-terminal amino acid sequence analysis revealed that the enzyme is closely related to the malate dehydrogenase families.  相似文献   

3.
Biotransformations of phenylpropanoids such as cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid were investigated with plant-cultured cells of Eucalyptus perriniana. The plant-cultured cells of E. perriniana converted cinnamic acid into cinnamic acid β-D-glucopyranosyl ester, p-coumaric acid, and 4-O-β-D-glucopyranosylcoumaric acid. p-Coumaric acid was converted into 4-O-β-D-glucopyranosylcoumaric acid, p-coumaric acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcoumaric acid β-D-glucopyranosyl ester, a new compound, caffeic acid, and 3-O-β-D-glucopyranosylcaffeic acid. On the other hand, incubation of caffeic acid with cultured E. perriniana cells gave 3-O-β-D-glucopyranosylcaffeic acid, 3-O-(6-O-β-D-glucopyranosyl)-β-D-glucopyranosylcaffeic acid, a new compound, 3-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcaffeic acid, 4-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, ferulic acid, and 4-O-β-D-glucopyranosylferulic acid. 4-O-β-D-Glucopyranosylferulic acid, ferulic acid β-D-glucopyranosyl ester, and 4-O-β-D-glucopyranosylferulic acid β-D-glucopyranosyl ester were isolated from E. perriniana cells treated with ferulic acid.  相似文献   

4.
The glycoside composition and sequence of an extracellular polysaccharide flocculant of Klebsiella pneumoniae H12 was analyzed. GC and HPLC analysis of the acid-hydrolysate identified its constituent monosaccharides as D-Glc, D-Man, D-Gal, and D-GlcA in an approximate molar ratio of 3.9:1.0:2.3:3.6. To analyze the glycoside sequence, the polysaccharide was partially hydrolyzed by acid and enzyme treatment. GC, HPLC, TLC, MALDI-TOF/MS, and 1H- and 13C- NMR spectroscopy characterized the obtained oligosaccharides.

The results clarified the partial structure of H12 polysaccharide as a linear polymer of a unit of pentasaccharide with a side chain of one D-GlcA to D-Glc moiety (see below). Although the existence of other sequences or other constituent glycosides could not be fully excluded, H12 polysaccharide must be a novel types as such a complicated unit for a polymer has not so far been reported. The partial structure of a H12 polysaccharide flocculant is also discussed in this report.

→4)- α-D-Glcp-(1→2)-α-D-Manp-(1→3)-4,6-Pyr-β-D- 3 Galp-(1→4)-β-D-Galp-(1→ ↓

1 β-D-GlcpA  相似文献   

5.
Ultracentrifugically homogeneous glucomannan acetate derived from konjac mannan was subjected to acetolysis. Besides β-1,4-linked oligosaccharides composed of D-mannose and/or D-glucose, three oligosaccharides corresponding to the branching point of the polysaccharide were isolated and identified as (1) 3-O-β-D-mannopyranosyl-D-mannose, (2) O-β-D-mannopyranosyl-(1→4)-O-β-D-mannopyranosyl-(1→3)-D-mannose, and (3) O-β-D- mannopyranosyl-(1→3)-O-β-D-mannopyranosyl-(1→4)-D-glucose. The average chain length (CL) was, moreover, determined to be about 46 by methylation analysis. The structural pattern of the glucomannan, including the branching point, is discussed.  相似文献   

6.
Novel D- and L-2′-azido-2′,3′-dideoxy-4′-thionucleosides were synthesized starting from L- and D-xylose via D- and L-4-thioarabitol derivative as key intermediates and evaluated for antiviral activity, respectively. When the final nucleosides were tested against HIV-1, HSV-1, HSV-2, and HCMV, they were found to be only active against HCMV without cytotoxicity up to 100 μg/ml.  相似文献   

7.
An X-ray crystal structural analysis revealed that (2S,3S)-N-acetyl-2-amino-3-methylpentanoic acid (N-acetyl-L-isoleucine; Ac-L-Ile) and (2R,3S)-N-acetyl-2-amino-3-methylpentanoic acid (N-acetyl-D-alloisoleucine; Ac-D-aIle) formed a molecular compound containing one Ac-L-Ile molecule and one Ac-D-aIle molecule as an unsymmetrical unit. This molecular compound is packed with strong hydrogen bonds forming homogeneous chains consisting of Ac-L-Ile molecules or Ac-D-aIle molecules and weak hydrogen bonds connecting these homogeneous chains in a fashion similar to that observed for Ac-L-Ile and Ac-D-aIle. Recrystallization of an approximately 1:1 mixture of Ac-L-Ile and Ac-D-aIle from water gave an equimolar molecular compound due to its lower solubility than that of Ac-D-aIle or especially Ac-L-Ile. The results suggest that the equimolar mixture of Ac-L-Ile and Ac-D-aIle could be obtained from an Ac-L-Ile-excess mixture by recystallization from water.  相似文献   

8.
Bacillus stearothermophilus CGTase had a wider acceptor specificity than Bacillus macerans CGTase did and produced large amounts of transfer products of various acceptors such as D-galactose, D-mannose, D-fructose, D- and L-arabinose, d- and L-fucose, L-rhamnose, D-glucosamine, and lactose, which were inefficient acceptors for B. macerans CGTase. The main component of the smallest transfer products of lactose was assumed to be α-D-glucosyl O-β-D-galactosyl-(l→4)-β-D-glucoside.  相似文献   

9.
ABSTRACT

Tyrosinase is the key enzyme that controls melanin formation. We found that a hot water extract of the lyophilized fruiting body of the fungus Lyophyllum decastes inhibited tyrosinase from Agaricus bisporus. The extract was fractionated by ODS column chromatography, and an active compound was obtained by purification through successive preparative HPLC using an ODS and a HILIC column. Using spectroscopic data, the compound was identified to be an uncommon amino acid, 6-hydroxytryptophan. 6-Hydroxy-L-tryptophan and 6-hydroxy-D-tryptophan were prepared through a Fenton reaction from L-tryptophan and D-tryptophan, respectively. The active compound was determined to be 6-hydroxy-L-tryptophan by comparison of their circular dichroism spectra and retention time on HPLC analysis of the Nα-(5-fluoro-2,4-dinitrophenyl)-L-leuciamide derivative with those of 6-hydroxy-L-tryptophan and 6-hydroxy-D-tryptophan. A Lineweaver–Burk plot of the enzyme reaction in the presence of 6-hydroxy-L-tryptophan indicated that this compound was a competitive inhibitor. The IC50 values of 6-hydroxy-L-tryptophan was 0.23 mM.  相似文献   

10.
We investigated in this study the effect of modified arabinoxylan from rice bran (MGN-3) and its fractions on D-galactosamine (D-GalN)-induced IL-18 expression and hepatitis in rats. Male Wistar rats were pretreated with MGN-3 or fractions of the MGN-3 hydrolysate, or with saline 1 h before administering D-GalN (400 mg/kg B.W.). The serum transaminase activities, IL-18 mRNA expression level in the liver and IL-18 concentration in the serum were determined 24 h after injecting D-GalN. Both the oral and intraperitoneal administration of MGN-3 (20 mg/kg B.W.) alleviated D-GalN-induced hepatic injury under these experimental conditions. The low-molecular-weight fraction (LMW) of MGN-3 showed the strongest protective effect on D-GalN-induced liver injury, its main sugar component being glucose. Moreover, the D-GalN-induced IL-18 expression was significantly reduced by treating with MGN-3 and LMW. The results suggest that MGN-3 and LMW could provide significant protection against D-GalN liver injury, and that IL-18 might be involved in their protective influence.  相似文献   

11.
Delipidated cell walls from Aureobasidium pullulans were fractionated systematically.

The cell surface heteropolysaccharide contains D-mannose, D-galactose, D-glucose, and D-glucuronic acid (ratio, 8.5:3.9:1.0:1.0). It consists of a backbone of (1→6)-α-linked D-mannose residues, some of which are substituted at O-3 with single or β-(1→6)-linked D-galactofuranosyl side chains, some terminated with a D-glucuronic acid residue, and also with single residues of D-glucopyranose, D-galactopyranose, and D-mannopyranose.

This glucurono-gluco-galactomannan interacted with antiserum against Elsinoe leucospila, which also reacted with its galactomannan, indicating that both polysaccharides contain a common epitope, i.e., at least terminal β-galactofuranosyl groups and also possibly internal β-(1→6)-linked galactofuranose residues.

It was further separated by DEAE-Sephacel column chromatography to gluco-galactomannan and glucurono-gluco-galactomannan.

The alkali-extracted β-D-glucan was purified by DEAE-cellulose chromatography to afford two antitumor-active (1→3)-β-D-glucans. One of the glucans (Mr, 1–2 × 105) was a O-6-branched (1→3)-β-D-glucan with a single β-D-glucosyl residue, d.b., 1/7, and the other (Mr, 3.5–4.5 × 105) had similar branched structure, but having d.b., 1/5. Side chains of both glucans contain small proportions of β-(1→6)-and β-(1→4)-D-glucosidic linkages.  相似文献   

12.
A simple procedure is described to obtain D- and L-allothreonine (D- and L-aThr). A mixture of N-acetyl-D-allothreonine (Ac-D-aThr) and N-acetyl-L-threonine (Ac-L-Thr) was converted to a mixture of their ammonium salts and then treated with ethanol to precipitate ammonium N-acetyl-L-threoninate (Ac-L-Thr·NH3) as the less-soluble diastereoisomeric salt. After separating Ac-L-Thr·NH3 by filtration, Ac-D-aThr obtained from the filtrate was hydrolyzed in hydrochloric acid to give D-aThr of 80% de, recrystallized from water to give D-aThr of >99% de. L-aThr was obtained from a mixture of the ammonium salts of Ac-L-aThr and Ac-D-Thr in a similar manner.  相似文献   

13.
We have developed a new enzymatic assay for determining L-cysteine concentration. The method involves the use of βC-S lyase from Streptococcus anginosus, which catalyzes the α,β-elimination of L-cysteine to hydrogen sulfide, pyruvate, and ammonia. The production of pyruvate is measured by D-lactate dehydrogenase and NADH. The decrease in NADH was proportional to the L-cysteine concentration up to 1.0 mM. When serum samples were used, within-day and day-to-day coefficient variations were below 4%. This method is simple, and can easily and reliably be used for accurate determination of L-cysteine concentration in serum or other samples.  相似文献   

14.
An extracellular polysaccharide elaborated by a new species of Beijerinckia indica, named TX-1, was composed of D-glucose, L-fucose, D-glycero-D-manno-heptose, and D-glucuronic acid in a molar ratio of 5.0:1.0:2.0:0.9, in addition to 16.2% of the acetyl group. Among the polysaccharides of the Beijerinckia species, the present polysaccharide might be the first acidic type having an L-fucose residue. A methylation analysis, Smith degradation study and fragmentation analysis show that this polysaccharide consisted of non-reducing terminal D-glucose, O-4 substituted D-glucose, O-2 substituted D-glycero-D-manno-heptose, O-4 substituted D-glucuronic acid, O-3 and O-4 substituted D-glucose, and O-3 substituted L-fucose residues. A D-glucuronic acid residue was linked to the O-3 position of the L-fucose residue by an α-glycosidic linkage. Most of the D-glucose residues in the backbone chain were substituted at the O-3 position, with the side chain having non-reducing terminal D-glucose residues. It is suggested by the reaction with Con A that the anomeric configuration of the terminal D-glucose residues was β.  相似文献   

15.
Two different membrane-bound enzymes oxidizing D-sorbitol are found in Gluconobacter frateurii THD32: pyroloquinoline quinone-dependent glycerol dehydrogenase (PQQ-GLDH) and FAD-dependent D-sorbitol dehydrogenase (FAD-SLDH). In this study, FAD-SLDH appeared to be induced by L-sorbose. A mutant defective in both enzymes grew as well as the wild-type strain did, indicating that both enzymes are dispensable for growth on D-sorbitol. The strain defective in PQQ-GLDH exhibited delayed L-sorbose production, and lower accumulation of it, corresponding to decreased oxidase activity for D-sorbitol in spite of high D-sorbitol dehydrogenase activity, was observed. In the mutant strain defective in PQQ-GLDH, oxidase activity with D-sorbitol was much more resistant to cyanide, and the H+/O ratio was lower than in either the wild-type strain or the mutant strain defective in FAD-SLDH. These results suggest that PQQ-GLDH connects efficiently to cytochrome bo 3 terminal oxidase and that it plays a major role in L-sorbose production. On the other hand, FAD-SLDH linked preferably to the cyanide-insensitive terminal oxidase, CIO.  相似文献   

16.
The D-sorbitol dehydrogenase gene, sldA, and an upstream gene, sldB, encoding a hydrophobic polypeptide, SldB, of Gluconobacter suboxydans IFO 3255 were disrupted in a check of their biological functions. The bacterial cells with the sldA gene disrupted did not produce L-sorbose by oxidation of D-sorbitol in resting-cell reactions at pHs 4.5 and 7.0, indicating that the dehydrogenase was the main D-sorbitol-oxidizing enzyme in this bacterium. The cells did not produce D-fructose from D-mannitol or dihydroxyacetone from glycerol. The disruption of the sldB gene resulted in undetectable oxidation of D-sorbitol, D-mannitol, or glycerol, although the cells produced the dehydrogenase. The cells with the sldB gene disrupted produced more of what might be signal-unprocessed SldA than the wild-type cells did. SldB may be a chaperone-like component that assists signal processing and folding of the SldA polypeptide to form active D-sorbitol dehydrogenase.  相似文献   

17.
A xylan from bamboo culm was isolated by extraction with aikali of chlorite holocellulose and fractional precipitation as a copper complex. The structure was investigated by means of examination of acid components by controlled hydrolysis, methylation analysis, and periodate oxidation. As a result, 4-O-methyl-α-D-glucuronic acid and 2-O-(4-O-methyl-α-D-glucopyranosyluronic acid) D-xylose were isolated and identified as acid components of the bamboo xylan. Hydrolysis of the fully methylated products afforded 2,3,5-tri-O- methyl-L-arabinose (1.6 moles), 2,3,4-tri-O-methyl-D-xylose (1.2 moles), 2,3,4,6-tetra-O-methyl-D-glucose(0.4 moles), 2,3-di-O-methyl-D-xylose (35.8 moles) and mono-O-methyl-D-xylose (2.6 moles). In addition to the above methylated sugars, 2,3,4-tri-O-methyl-D-glucuronic acid and partially methylated aldobiouronic acid were separated by cellulose column chromatography and identified. These results suggest that the bamboo xylan consists mainly of a linear backbone of 1,4-linked β-D-xylopyranose unit, to which L-arabinofuranose and 4-O-methyl-D-glucuronic acid were attached as a single side chain unit at C2 or C3.

Additional evidence for a linear chain structure has been given by periodate oxidation. On oxidation by periodate, the bamboo xylan consumed 1.09 moles of periodate and produced 0.05 mole of formic acid per anhydroxylose unit.  相似文献   

18.
Unlabeled D- and L-alanine were racemized in deuterium oxide with an alanine racemase of Bacillus stearothermophilus at saturated concentration of substrate, and various p2H and temperature. Samples of the solution were taken at intervals, and all alanine isomers in the samples were transformed into a mixture of diastereomeric derivatives of methyl N-(–)-camphanylalaninate. Their ratio was measured on a GC-Mass, and the relative rate was calculated at the initial stage of the reaction. There was little difference in the decrease rate of the optical rotation between the enantiomers. Internal proton-transfer to the antipode was almost zero for either substrate. The α-hydrogen was abstracted 1.2–2.3 times faster from D-alanine than from L-alanine. D-Alanine gave an almost even mixture of deuterium labeled D- and L-alanine, while L-alanine gave a mixture of labeled D- and L-alanine at a ratio of 3:1. These results suggest the racemase builds two different bases in the active site. The base for D-alanine may be closer to the enzyme surface, and that for L-alanine inside.  相似文献   

19.
The seco C-nucleosides 3-(1,2,3,4,5-penta-O-acetyl-D-gluco- and D- galacto-pentitol-1-yl)-1H-1,2,4-triazoles (8 and 9) were obtained in a one pot by deamination and dethiolation of 4-amino-3-(D-gluco- and D-galacto-pentitol-1-yl)-5-mercapto-1,2,4-triazoles (1 and 2), respectively, using sodium nitrite in orthophosphoric acid and subsequent acetylation. Condensation of 1, 2, and 4-amino-3-(D-glycero-D-gulo-hexitol-1-yl)-5-mercapto-1,2,4-triazole (12) with phenacylbromide (11) afforded the corresponding 3-(D-gluco-, D-galacto-pentitol-1-yl) and 3-(D-glycero-D-gulo-hexitol-1-yl)-6-phenyl-7H-1,2,4- triazolo[3,4-b][1,3,4] thiadiazines (15, 16, and 17). Acetylation of 15–17 gave the penta- and hexa-O-acetyl derivatives 18–20, respectively. The structures were confirmed by using 1H, 13C, and 2D NMR spectra, DQFCOSY, HMQC, and HMBC experiments. The favored conformational structures were deduced from the vicinal coupling constants of the protons.  相似文献   

20.
The structure of the hydrolyzed product (F-2) with a molecular mass of about 2 kDa released from γ-polyglutamic acid by the γ-glutamyl hydrolase YwtD of Bacillus subtilis was analyzed. The results showed that F-2 is an optically heterogeneous polymer consisting of D- and L-glutamic acid in an 80:20 ratio with D-glutamic acid on both the N- and C-terminal sides, suggesting that YwtD is an enzyme that cleaves the γ-glutamyl bond between D- and D-glutamic acid recognizing adjacent L-glutamic acid toward the N-terminal region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号