首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Baker's yeast pretreated with α-phenacyl chloride was employed to improve the enantioselectivity of the asymmetric reduction of ethyl-2-oxo-4-phenylbutyrate (EOPB) to ethyl-(R)-2-hydroxy-4-phenylbutyrate ((R)-EHPB) and maintain a high activity of the yeast. A water/organic solvent two-liquid phase system was also introduced to overcome the strong substrate and product inhibition of the enzyme; the highest catalytic activity and enantioselectivity were obtained in a water/benzene two-liquid phase system. When the reduction was catalyzed with pretreated yeast (300 mg mL?1 buffer) in the water/benzene two-liquid phase system (Vaq/Vben=20:40), 41.9% molar conversion of EOPB and 87.5% e.e. of (R)-EHPB were obtained in 48 h, using pH 8.0 phosphate buffer with 1.5% (v/v) of ethanol added as a co-substrate at 30°C, even with an initial EOPB concentration of 400 mM and a final EHPB concentration as high as 167.7 mM.  相似文献   

2.
The effect of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) on the asymmetric reduction of ethyl 2-oxo-4-phenylbutyrate (EOPB) to synthesize optical active ethyl 2-hydroxy-4-phenylbutyrate (EHPB) catalyzed by Saccharomyces cerevisiae was investigated. (R)-EHPB [70.4%, e.e.(R)] is obtained using ethyl ether or benzene as the solvent. The main product is (S)-EHPB [27.7%, e.e.(S)] in [BMIM][PF6]. However, in ionic liquid-water (10:1, v/v) biphasic system, the enantioselectivity of the reduction is shifted towards (R)-side, and e.e.(R) is increased from 6.6 to 82.5% with the addition of ethanol (1%, v/v). The effect of the use of [BMIM][PF6] as an additive in relatively small amounts on the reduction was also studied. We find that there is a decline in the enantioselectivity of the reduction in benzene. In addition, a decrease in the conversion of EOPB and the yield of EHPB with increasing [BMIM][PF6] concentrations occurs in either organic solvent–water biphasic systems or benzene.  相似文献   

3.
Different microorganisms (MOs) were used to carry out the enantioselective reduction of ethyl-2-oxo-4-phenylbutanoate to (S)-(+)-2-hydroxy-4-phenylbutanoate or (R)-(+)-2-hydroxy-4-phenylbutanoate. Commercially available Saccharomyces cerevisiae and Dekera sp. led to over 92% ee of (S)-(+)-2-hydroxy-4-phenylbutanoate. Kluyveromyces marxianus gave the opposite isomer with 32% ee (R). All reactions, except those with Hansenula sp., proceeded to greater than 90% conversion. This the first report on the use of Dekera sp., Hansenula sp. and K. marxianus in the reduction of α-ketoesters.  相似文献   

4.
Enzyme-catalyzed asymmetric reduction of ethyl 4-chloro-3-oxobutanoate in an organic solvent-water diphasic system was studied. NADPH-dependent aldehyde reductase isolated from Sporobolomyces salmonicolor AKU4429 and glucose dehydrogenase were used as catalysts for reduction of ethyl 4-chloro-3-oxobutanoate and recycling of NADPH, respectively, in this system. In an aqueous system, the substrate was unstable. Inhibition of the reaction and inactivation of the enzymes by the substrate and the product were also observed. An n-butyl acetate-water diphasic system very efficiently overcame these limitations. In a 1,600-ml−1,600-ml scale diphasic reaction, ethyl (R)-4-chloro-3-hydroxybutanoate (0.80 mol; 86% enantiomeric excess) was produced from the corresponding oxoester in a molar yield of 95.4% with an NADPH turnover of 5,500 mol/mol.  相似文献   

5.
Summary (S)-3-hydroxy-2-substituted propionaldehyde dimethyl or diethyl acetals 3, which are versatile synthons in dipeptide isostere synthesis, were synthesized in 54–95% enantiomeric excess by reduction of (S,R)-acetalized acyloxazolidinones 7 with LiAlH4.  相似文献   

6.
Whole cells of the yeast Rhodotorula minuta were used in the biotransformation of dialkyl esters of 2-oxoglutaric acid. Almost 100% of conversion with 97–98% of enantiomeric excess of the (S) form of 2-hydroxydiesters was obtained through an enantioselective reduction of dimethyl and diethyl 2-oxoglutarate. When longer alkoxy chain 2-oxoglutarates were used as substrates, the corresponding 4-hydroxybutyric esters were obtained, suggesting a combination process including hydrolysis, decarboxylation and reduction. The cells showed a remarkable high productivity: high conversion and enantiomeric excess were obtained at 2 g wet weight mmol?1 substrate.  相似文献   

7.
The moderate enantioselectivity of wild form baker's yeast can be considerably increased either by using continuous feeding to maintain a low substrate concentration throughout the reaction, or by the selective inhibition of competing enzymatic pathways. The reduction of ethyl 3‐oxobutyrate to ethyl (S)‐3‐hydroxybutyrate was used as a model reaction. With the substrate feeding method, the enantioselectivity could be increased from 75 % to as high as 98 %. The increased selectivity originates from the much higher substrate binding constant of the (R)‐specific enzymes, so that these enzymes remain essentially inactive if a low concentration of ethyl 3‐oxobutyrate is maintained in the bioreactor. Alternatively, the enantioselectivity of baker's yeast can be improved by selectively blocking competing enzymatic pathways. It was found that vinyl acetate is a selective inhibitor for the (R)‐specific enzymes. Ethyl (S)‐3‐hydroxybutyrate with an enantiomeric excess of 98 % was obtained by pre‐incubation of baker's yeast in 100 mM of vinyl acetate solution for 1 h. These results suggest that by selecting appropriate process conditions, natural baker's yeast can be a competitive biocatalyst for the large‐scale production of chiral secondary alcohols.  相似文献   

8.
Ethyl (R)-2-hydroxy-4-phenylbutanoate [(R)-HPBE] is a versatile and important chiral intermediate for the synthesis of angiotensin-converting enzyme (ACE) inhibitors. Recombinant E. coli strain coexpressing a novel NADPH-dependent carbonyl reductase gene iolS and glucose dehydrogenase gene gdh from Bacillus subtilis showed excellent catalytic activity in (R)-HPBE production by asymmetric reduction. IolS exhibited high stereoselectivity (>98.5% ee) toward α-ketoesters substrates, whereas fluctuant ee values (53.2–99.5%) for β-ketoesters with different halogen substitution groups. Strategies including aqueous/organic biphasic system and substrate fed-batch were adopted to improve the biocatalytic process. In a 1-L aqueous/octanol biphasic reaction system, (R)-HPBE was produced in 99.5% ee with an exceptional catalyst yield (gproduct/gcatalyst) of 31.7 via bioreduction of ethyl 2-oxo-4-phenylbutyrate (OPBE) at 330 g/L.  相似文献   

9.
Synthesis of (R)-2-trimethylsilyl-2-hydroxyl-propionitrile via asymmetric transcyanation of acetyltrimethylsilane with acetone cyanohydrin in an aqueous/organic biphasic system catalyzed by (R)-hydroxynitrile lyase from Prunus japonica seed meal was successfully carried out for the first time. The optimal volume ratio of aqueous to organic phase, buffer pH value and reaction temperature were 15% (v/v), 5.0 and 30°C, respectively, under which both substrate conversion and product enantiomeric excess (ee) were 99%. Silicon atom in the substrate showed great effect on the reaction. Acetyltrimethylsilane was a much better substrate for (R)-hydroxynitrile lyase from Prunus japonica than its carbon analogue.  相似文献   

10.
A comparative study of two modifications of enzymic reduction of ethyl N-{2-{4-[(2-oxo-cyclohexyl)methyl]phe- noxy}ethyl} carbamate (1), an insect juvenile hormone bioanalog, was performed using Saccharomyces cerevisiae in two bioreactors of different size, 250-ml shake-flask and 1-l fermenter. The two major products of this reduction were obtained in 45–49% (w/w) yields but with > 99% enantiomeric purity. Their absolute configurations were assigned as ethyl (1S,2S)-N-{2-{4-[(2-hydroxycyclohexyl)methyl]phenoxy}ethyl}carbamate (2a) and ethyl (1R,2S)-N-{2-{4-[(2-hydroxycyclohexyl)methyl]phenoxy}ethyl}carbamate (3a).  相似文献   

11.
The asymmetric reduction of benzyl to (S)-benzoin with Penicillium claviforme IAM 7294 was applied to a liquid-liquid interface bioreactor (L-L IBR) using a unique polymeric material, ballooned microsphere (MS). The L-L IBR showed superior performance, as compared with suspension, organic-aqueous two-liquid-phase, and solid-liquid interface bioreactor (S-L IBR) systems, affording 14.4 g/l-organic phase of (S)-benzoin (99.0% ee).  相似文献   

12.
An (R)-specific carbonyl reductase from Candida parapsilosis CCTCCM203011 (CprCR) was shown to catalyze the asymmetric reduction of 2-hydroxyacetophenone to (R)-1-phenyl-1,2-ethanediol (PED), which is a critical chiral building block in organic synthesis. The gene (rcr) encoding CprCR was cloned based on the amino acid sequences of tryptic fragments of the enzyme. Sequence analysis revealed that rcr is comprised of 1008 nucleotides encoding a 35 977 Da polypeptide, and shares similarity to proteins of the medium-chain dehydrogenase/reductase (MDR) superfamily. Recombinant rcr expressed in Escherichia coli showed a specific 2-hydroxyacetophenone-reducing activity. Using rcr expressing cells, (R)-PED was obtained by asymmetric reduction, which is complementary in enantiomeric configuration to (S)-PED obtained by using whole cells of C. parapsilosis. After optimization of reaction conditions, (R)-PED was produced at 95.5% enantiomeric excess with a yield of 92.6% when isopropanol was used for cofactor regeneration.  相似文献   

13.
Zhu G  Yao R  Zhu H  Wang H 《Biotechnology letters》2012,34(4):709-715
(2R)-2-[4-(4-Cyano-2-fluorophenoxy)phenoxy]butylpropanoate (cyhalofop-butyl, CyB) was synthesized by a chemoenzymatic route involving enantioselective transesterification with Candida antarctica lipase B (Novozym 435). The optimum organic solvent, acyl donor, a w , reaction temperature and shaking rate for the transesterification were acetonitrile, n-butanol, 0.11, 45°C and 200 rpm, respectively. Under the optimum conditions, the maximum substrate conversion and the enantiomeric purity of the product were 96.9 and >99%, respectively. The total yield and enantiomeric purity of CyB by this chemoenzymatic synthesis were 60.4 and >99%, respectively; 15.3 and 21% higher than that of the traditional way (45 and 78%).  相似文献   

14.
An asymmetric hydrogen-transfer biocatalyst consisting of mutated Rhodococcus phenylacetaldehyde reductase (PAR) or Leifsonia alcohol dehydrogenase (LSADH) was applied for some water-soluble ketone substrates. Among them, 4-hydroxy-2-butanone was reduced to (S)/(R)-1,3-butanediol, a useful intermediate for pharmaceuticals, with a high yield and stereoselectivity. Intact Escherichia coli cells overexpressing mutated PAR (Sar268) or LSADH were directly immobilized with polyethyleneimine or 1,6-diaminehexane and glutaraldehyde and evaluated in a batch reaction. This system produced (S)-1,3-butanediol [87% enantiomeric excess (e.e.)] with a space time yield (STY) of 12.5 mg h−1 ml−1 catalyst or (R)-1,3-butanediol (99% e.e.) with an STY of 60.3 mg h−1 ml−1 catalyst, respectively. The immobilized cells in a packed bed reactor continuously produced (R)-1,3-butanediol with a yield of 99% (about 49.5 g/l) from 5% (w/v) 4-hydroxy-2-butanoate over 500 h.  相似文献   

15.
Enantiospecific microbial reduction of bicyclic ketones was described. Racemic Wieland–Miescher (1) and Hajos–Parrish (2) ketones were used as substrates. In a 4-h biotransformation of Hajos–Parrish ketone (2) using the strain of Didymosphaeria igniaria an optically pure ketone (R)-2 was obtained, whereas the (S)-2 ketone underwent reduction to (4aS,5S)-4 alcohol with 100% of enantiomeric excess and with over 60% of diastereoisomeric excess. Jones oxidation of the alcohol obtained in the biotransformation gave an optically pure ketone (S)-2. Enzymatic system of Coryneum betulinum reduced the (R)-2 ketone to (4aR,5S)-4 alcohol with a high enantiomerical purity in a 6-day reaction. Wieland-Miescher (1) ketone was transformed by these microorganisms in an analogous way, but the reaction times were longer.  相似文献   

16.
A new chemoenzymatic route is reported to synthesize acebutolol, a selective β1 adrenergic receptor blocking agent in enantiopure (R and S) forms. The enzymatic kinetic resolution strategy was used to synthesize enantiopure intermediates (R)‐ and (S)‐N‐(3‐acetyl‐4‐(3‐chloro‐2‐hydroxypropoxy)phenyl)butyramide from the corresponding racemic alcohols. The results showed that out of eleven commercially available lipase preparations, two enzyme preparations (Lipase A, Candida antarctica, CLEA [CAL CLEA] and Candida rugosa lipase, 62316 [CRL 62316]) act in enantioselective manner. Under optimized conditions the enantiomeric excess of both (R)‐ and (S)‐N‐(3‐acetyl‐4‐(3‐chloro‐2‐hydroxypropoxy)phenyl)butyramide were 99.9 and 96.8%, respectively. N‐alkylation of both the (R) and (S) intermediates with isopropylamine gave enantiomerically pure (R and S)‐ acebutolol with a yield 68 and 72%, respectively. This study suggests a high yielding, easy and environmentally green approach to synthesize enantiopure acebutolol. Chirality 27:382–391, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
The biocatalytic reduction of 4-(trimethylsilyl)-3-butyn-2-one to enantiopure (R)-4-(trimethylsilyl)-3-butyn-2-ol was successfully conducted with high enantioselectivity using immobilized whole cells of a novel strain Acetobacter sp. CCTCC M209061, newly isolated from kefir. Compared with other microorganisms that were investigated, Acetobacter sp. CCTCC M209061 was shown to be more effective for the bioreduction reaction, and afforded much higher yield and product enantiomeric excess (e.e.). The optimal buffer pH, co-substrate concentration, reaction temperature, substrate concentration and shaking rate were 5.0, 130.6 mM, 30 °C, 6.0 mM and 180 r/min, respectively. Under the optimized conditions, the maximum yield and the product e.e. were 71% and >99%, respectively, which are much higher than those reported previously. Additionally, the established biocatalytic system proved to be efficient for the bioreduction of acetyltrimethylsilane to (R)-1-trimethylsilylethanol with excellent yield and product e.e. The immobilized cells manifested a good operational stability under the above reaction conditions since they retained 70% of their catalytic activity after ten cycles of use.  相似文献   

18.
Bacillus sp. Z018, a novel strain producing epoxide hydrolase, was isolated from soil. The epoxide hydrolase catalyzed the stereospecific hydrolysis of (R)-phenyl glycidyl ether to generate (R)-3-phenoxy-1,2-propanediol. Epoxide hydrolase from Bacillus sp. Z018 was inducible, and (R)-phenyl glycidyl ether was able to act as an inducer. The fermentation conditions for epoxide hydrolase were 35°C, pH 7.5 with glucose and NH4Cl as the best carbon and nitrogen source, respectively. Under optimized conditions, the biotransformation yield of 45.8% and the enantiomeric excess of 96.3% were obtained for the product (R)-3-phenoxy-1,2-propanediol.  相似文献   

19.
A novel NADPH-dependent reductase (CaCR) from Candida albicans was cloned for the first time. It catalyzed asymmetric reduction to produce ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE). It contained an open reading frame of 843 bp encoding 281 amino acids. When co-expressed with a glucose dehydrogenase in Escherichia coli, recombinant CaCR exhibited an activity of 5.7 U/mg with ethyl 4-chloro-3-oxobutanoate (COBE) as substrate. In the biocatalysis of COBE to (S)-CHBE, 1320 mM (S)-CHBE was obtained without extra NADP+/NADPH in a water/butyl acetate system, and the optical purity of the (S)-isomer was higher than 99% enantiomeric excess.  相似文献   

20.
Abstract

The enantioselective desymmetrization of a prochiral 3-O-silyl protected pentane-1,3,5-triol derivative was achieved by lipase-catalysed hydrolysis. The lipase from B. cepacia led to 95.4% enantiomeric excess (ee)of the (R)-configured compound (R)-4 at a theoretical yield of 79% and was isolated with 98.2% ee and 27% yield. Furthermore, it was found that the ee switched from an excess of (R)-4 to an excess of (S)-4 during the course of the reaction using crude lipase from C. rugosa under the same conditions. This finding was investigated in detail and compared to the change of substrate selectivity known for the lipase from M. miehei. It is supposed that both phenomena may result from a movement of the lid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号