首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The arthropod head problem has puzzled zoologists for more than a century. The head of adult arthropods is a complex structure resulting from the modification, fusion and migration of an uncertain number of segments. In contrast, onychophorans, which are the probable sister group to the arthropods, have a rather simple head comprising three segments that are well defined during development, and give rise to the adult head with three pairs of appendages specialised for sensory and food capture/manipulative purposes. Based on the expression pattern of the anterior Hox genes labial, proboscipedia, Hox3 and Deformed, we show that the third of these onychophoran segments, bearing the slime papillae, can be correlated to the tritocerebrum, the most anterior Hox-expressing arthropod segment. This implies that both the onychophoran antennae and jaws are derived from a more anterior, Hox-free region corresponding to the proto and deutocerebrum of arthropods. Our data provide molecular support for the proposal that the onychophoran head possesses a well-developed appendage that corresponds to the anterior, apparently appendage-less region of the arthropod head.  相似文献   

2.
3.
4.
5.
The intercalary segment is a limbless version of the tritocerebral segment and is present in the head of all insects, whereas other extant arthropods have retained limbs on their tritocerebral segment (e.g. the pedipalp limbs in spiders). The evolutionary origin of limb loss on the intercalary segment has puzzled zoologists for over a century. Here we show that an intercalary segment-like phenotype can be created in spiders by interfering with the function of the Hox gene labial. This links the origin of the intercalary segment to a functional change in labial. We show that in the spider Parasteatoda tepidariorum the labial gene has two functions: one function in head tissue maintenance that is conserved between spiders and insects, and a second function in pedipalp limb promotion and specification, which is only present in spiders. These results imply that labial was originally crucial for limb formation on the tritocerebral segment, but that it has lost this particular subfunction in the insect ancestor, resulting in limb loss on the intercalary segment. Such loss of a subfunction is a way to avoid adverse pleiotropic effects normally associated with mutations in developmental genes, and may thus be a common mechanism to accelerate regressive evolution.  相似文献   

6.
Planarians belong to the phylum Platyhelminthes and can regenerate their missing body parts after injury via activation of somatic pluripotent stem cells called neoblasts. Previous studies suggested that fibroblast growth factor (FGF) signaling plays a crucial role in the regulation of head tissue differentiation during planarian regeneration. To date, however, no FGF homologues in the Platyhelminthes have been reported. Here, we used a planarian Dugesia japonica model and identified an fgf gene termed Djfgf, which encodes a putative secreted protein with a core FGF domain characteristic of the FGF8/17/18 subfamily in bilaterians. Using Xenopus embryos, we found that DjFGF has FGF activity as assayed by Xbra induction. We next examined Djfgf expression in non-regenerating intact and regenerating planarians. In intact planarians, Djfgf was expressed in the auricles in the head and the pharynx. In the early process of regeneration, Djfgf was transiently expressed in a subset of differentiated cells around wounds. Notably, Djfgf expression was highly induced in the process of head regeneration when compared to that in the tail regeneration. Furthermore, assays of head regeneration from tail fragments revealed that combinatorial actions of the anterior extracellular signal-regulated kinase (ERK) and posterior Wnt/ß-catenin signaling restricted Djfgf expression to a certain anterior body part. This is the region where neoblasts undergo active proliferation to give rise to their differentiating progeny in response to wounding. The data suggest the possibility that DjFGF may act as an anterior counterpart of posteriorly localized Wnt molecules and trigger neoblast responses involved in planarian head regeneration.  相似文献   

7.
We studied molecular-genetic mechanisms of retina regeneration in amphibians and, specifically, expression of the homeobox genes Pax6, Prox1, and Six3 in normal development and during retina regeneration in the newt. Based on the structural analysis of genes in closely related amphibian species, primers were constructed that flank certain regions of these genes. PCR fragments of calculated length were obtained. The relationship of PCR products to the above genes was confirmed by sequencing. A comparative PCR analysis of expression of Pax6, Prox1, and Six3 was carried out in the native and regenerating newt retina, which allowed estimation of the level of expression. cDNA libraries obtained from the native and regenerating retina were used as templates. The libraries were preliminary standardized according to glyceraldehydes-3-phosphate dehydrogenase, an enzyme of general cell metabolism. The genes we studied were expressed in both native and regenerating retina. The level of Pax6 and Prox1 expression increased during regeneration, while that of Six3 decreased. The decrease in the level of Six3 expression could be due to antagonistic interrelations of Prox1 and Six3. The changed level of Prox1 and Six3 expression is a new fact and requires further studies. The interactions between these and other regulatory genes and localization of their expression in the cells of native and regenerating retina will be studied using in situ hybridization and immunohistochemistry.  相似文献   

8.
Among arthropods, Cirripedia (barnacles) are remarkable in that they completely lack abdominal segments. This feature prompted us to study theHoxgenes of three cirripede species, representing a wide array of the diversity of these organisms, a segmented sessile barnacle,Elminius modestus(Thoracica), the parasite of a crab,Sacculina carcini(Rhizocephala), and the burrowing barnacleTrypetesa lampas(Acrothoracica). Using PCR amplification of genomic DNA and cDNA and library probing, we have found seven clear cirripedian homologues of the eight homeoticHoxgenes known in insects, includinglabialandproboscipediahomologues, that were not previously reported in crustaceans. In addition we have isolated a divergentAntp-like gene, namedDiva, that we homologize to theftzgene of insects. The homeotic geneabdominalA(abdA) was not retrieved from any of these three cirripede species. By contrast, we have found all eight homeotic homologue genes, includingabdA, inUlophysema oeresundense, a crustacean possessing a well-developed abdomen, belonging to the Ascothoracica, generally thought to be the sister group of Cirripedia. Since we have found in barnacles homeobox-containing genes that are more divergent from theAntennapediatype than the typicalabdA, we believe that abona fide abdAgene would not have escaped our search. Hence, theabdAgene has been lost or is profoundly derived in sequence during the evolution leading to the cirripedian lineage. If confirmed, the lack ofabdAwould represent the first case in which the loss of a homeotic gene is correlated with a change in body plan during the evolution of metazoans.  相似文献   

9.
Due to work in model systems (e.g., flies and mice), the molecular mechanisms of embryogenesis are known in exquisite detail. However, these organisms are incapable of asexual reproduction and possess limited regenerative abilities. Thus, the mechanisms of alternate developmental trajectories and their relation to embryonic mechanisms remain understudied. Because these developmental trajectories are present in a diverse group of animal phyla spanning the metazoan phylogeny, including cnidarians, annelids, and echinoderms, they are likely to have played a major role in animal evolution. The starlet sea anemone Nematostella vectensis, an emerging model system, undergoes larval development, asexual fission, and complete bi-directional regeneration in the field and laboratory. In order to investigate to what extent embryonic patterning mechanisms are utilized during alternate developmental trajectories, we examined expression of developmental regulatory genes during regeneration and fission. When compared to previously reported embryonic expression patterns, we found that all genes displayed some level of expression consistent with embryogenesis. However, five of seven genes investigated also displayed striking differences in gene expression between one or more developmental trajectory. These results demonstrate that alternate developmental trajectories utilize distinct molecular mechanisms upstream of major developmental regulatory genes such as fox, otx, and Hox-like.  相似文献   

10.
11.
12.
During central nervous system (CNS) development neural stem cells (Neuroblasts, NBs) have to acquire an identity appropriate to their location. In thoracic and abdominal segments of Drosophila, the expression pattern of Bithorax-Complex Hox genes is known to specify the segmental identity of NBs prior to their delamination from the neuroectoderm. Compared to the thoracic, ground state segmental units in the head region are derived to different degrees, and the precise mechanism of segmental specification of NBs in this region is still unclear. We identified and characterized a set of serially homologous NB-lineages in the gnathal segments and used one of them (NB6-4 lineage) as a model to investigate the mechanism conferring segment-specific identities to gnathal NBs. We show that NB6-4 is primarily determined by the cell-autonomous function of the Hox gene Deformed (Dfd). Interestingly, however, it also requires a non-cell-autonomous function of labial and Antennapedia that are expressed in adjacent anterior or posterior compartments. We identify the secreted molecule Amalgam (Ama) as a downstream target of the Antennapedia-Complex Hox genes labial, Dfd, Sex combs reduced and Antennapedia. In conjunction with its receptor Neurotactin (Nrt) and the effector kinase Abelson tyrosine kinase (Abl), Ama is necessary in parallel to the cell-autonomous Dfd pathway for the correct specification of the maxillary identity of NB6-4. Both pathways repress CyclinE (CycE) and loss of function of either of these pathways leads to a partial transformation (40%), whereas simultaneous mutation of both pathways leads to a complete transformation (100%) of NB6-4 segmental identity. Finally, we provide genetic evidences, that the Ama-Nrt-Abl-pathway regulates CycE expression by altering the function of the Hippo effector Yorkie in embryonic NBs. The disclosure of a non-cell-autonomous influence of Hox genes on neural stem cells provides new insight into the process of segmental patterning in the developing CNS.  相似文献   

13.
It is important that endogenous reference genes for real-time RT-PCR be empirically evaluated for stability in different cell types, developmental stages, and/or sample treatment. To select the most stable endogenous reference genes during planarian regeneration, three housekeeping genes, 18S rRNA, ACTB and DjEF2, were identified and established expression levels by real-time RT-PCR. The data were analyzed by GeNorm and NormFinder software. Expression levels of the Djsix-1 gene were studied in parallel with ACTB and DjEF2 both or each and 18S rRNA as reference during regeneration. The results showed that ACTB was the most stable expressed reference gene in the planarian regeneration.  相似文献   

14.
15.
Pax group III genes are involved in a number of processes during insect segmentation. In Drosophila melanogaster, three genes, paired, gooseberry and gooseberry-neuro, regulate segmental patterning of the epidermis and nervous system. Paired acts as a pair-rule gene and gooseberry as a segment polarity gene. Studies of Pax group III genes in other insects have indicated that their expression is a good marker for understanding the underlying molecular mechanisms of segmentation. We have cloned three Pax group III genes from the honeybee (Apis mellifera) and examined their relationships to other insect Pax group III genes and their expression patterns during honeybee segmentation. The expression pattern of the honeybee homologue of paired is similar to that of paired in Drosophila, but its expression is modulated by anterior–posterior temporal patterning similar to the expression of Pax group III proteins in Tribolium. The expression of the other two Pax group III genes in the honeybee indicates that they also act in segmentation and nervous system development, as do these genes in other insects.  相似文献   

16.
The simultaneous and quantitative analysis of the expression of multiple genes helps to shed light on gene regulatory networks. We established a method for multi‐color fluorescence in situ hybridization (mFISH) for the analysis of cell‐type diversification and developmental gene regulation in the embryo of the spider Parasteatoda tepidariorum. This mFISH technique allowed quadruple staining using four types of labels for RNA probes, digoxigenin, fluorescein, biotin, and dinitrophenyl, together with different fluorescent tyramides. To validate the usability of mFISH, we conducted four experiments. First, we distinguished similar gene expression patterns with mFISH, which showed overlaps and differences in the expression domains of anterior patterning hedgehog (hh), orthodenticle (otd), and labial genes at a cellular resolution. Second, we used mFISH to identify early cell types that are internalized on the anterior side. We found that fork head‐positive cells were subdivided into two cell types, 012_A08‐positive endoderm cells and twist‐positive mesoderm cells. Third, we quantified the ratio of expression levels of the odd‐paired (opa) gene in the chelicera and pedipalp segments based on the intensity of mFISH signals. Finally, we combined mFISH with embryonic RNA interference. It was possible to identify opa knockdown cell clones and detect the specific reduction of opa and the upregulation of otd and hh expression levels in the same cell clone that formed in the head region. This study proposes that mFISH is a powerful tool for the cell‐level analysis of gene regulation and quantification in the spider model.  相似文献   

17.
The occurrence of genes encoding biotechnologically relevant α/β‐hydrolases in mangrove soil microbial communities was assessed using data obtained by whole‐metagenome sequencing of four mangroves areas, denoted BrMgv01 to BrMgv04, in São Paulo, Brazil. The sequences (215 Mb in total) were filtered based on local amino acid alignments against the Lipase Engineering Database. In total, 5923 unassembled sequences were affiliated with 30 different α/β‐hydrolase fold superfamilies. The most abundant predicted proteins encompassed cytosolic hydrolases (abH08; ~ 23%), microsomal hydrolases (abH09; ~ 12%) and Moraxella lipase‐like proteins (abH04 and abH01; < 5%). Detailed analysis of the genes predicted to encode proteins of the abH08 superfamily revealed a high proportion related to epoxide hydrolases and haloalkane dehalogenases in polluted mangroves BrMgv01‐02‐03. This suggested selection and putative involvement in local degradation/detoxification of the pollutants. Seven sequences that were annotated as genes for putative epoxide hydrolases and five for putative haloalkane dehalogenases were found in a fosmid library generated from BrMgv02 DNA. The latter enzymes were predicted to belong to Actinobacteria, Deinococcus‐Thermus, Planctomycetes and Proteobacteria. Our integrated approach thus identified 12 genes (complete and/or partial) that may encode hitherto undescribed enzymes. The low amino acid identity (< 60%) with already‐described genes opens perspectives for both production in an expression host and genetic screening of metagenomes.  相似文献   

18.
We studied tissue-specific expression of homeobox genes Pax6, Prox1, and Six3 during regeneration of the retina and lens. In the native retina, mRNA of Pax6, Prox1, and Six3 was predominantly localized in ganglion cells and in the inner nuclear layer of the retina. Active Pax6, Prox1, and Six3 expression was detected at early stages of regeneration in all proliferating neuroblasts forming the retinal primordium. Low levels of Pax6, Prox1, and Six3 mRNA were revealed in depigmented cells of the pigment epithelium as compared to the proliferating neuroblasts. At the intermediate stage of retinal regeneration, the distribution of Pax6, Prox1, and Six3 mRNA was diffuse and even all over the primordium. During differentiation of the cellular layers in the course of retinal regeneration, Pax6, Prox1, and Six3 mRNA was predominantly localized in ganglion cells and in the inner part of the inner nuclear layer, which was similar to the native retina. An increased expression was revealed in the peripheral regenerated retina where multipotent cells were localized. The dual role of regulatory genes Pax6, Prox1, and Six3 during regeneration of eye structures has been revealed; these genes controlled cell proliferation and subsequent differentiation of ganglion, amacrine, and horizontal cells. High hybridization signal of all studied genes was revealed in actively proliferating epithelial cells of the native and regenerating lens, while the corneal epithelium demonstrated a lower signal. Pax6 and Prox1 expression was also revealed in single choroid cells of the regenerating eye.  相似文献   

19.
The human complement component 4 is encoded in two genes, C4A and C4B, residing between the class I and class II genes of the major histocompatibility complex. The C4A and C4B molecules differ in their biological activity, the former binding more efficiently to proteins than to carbohydrates while for the latter, the opposite holds true. To shed light on the origin of the C4 genes we isolated cosmid clones bearing the C4 genes of a chimpanzee, a gorilla, and an orang-utan. From the clones, we isolated the fragments coding for the C4d part of the gene (exons and introns) and sequenced them. Altogether we sequenced eight gene fragments: three chimpanzee (Patr-C4-1 *01, Patr-C4-1 *02, Patr-C4-2 *01), two gorilla (Gogo-C4-1 *01, Gogo-C4-2 *01), and three orang-utan (Popy-C4-1 *01, Popy-C4-2 *01, Popy-C4-3 *01). Comparison of the sequences with each other and with human C4 sequences revealed that in the region believed to be responsible for the functional difference between the C4A and C4B proteins the C4A genes of the different species fell into one group and the C4B genes fell into another. In the rest of the sequence, however, the C4A and C4B genes of each species resembled each other more than they did C4 genes of other species. These results are interpreted as suggesting extensive homogenization (concerted evolution) of the C4 genes in each species, most likely by repeated unequal, homologous, intragenic crossing-over. Address correspondence and offprint requests to: J. Klein.  相似文献   

20.
Vertebrates have unique head structures that are mainly composed of the central nervous system, the neural crest, and placode cells. These head structures are brought about initially by the neural induction between the organizer and the prospective neuroectoderm at early gastrula stage. Purinergic receptors are activated by nucleotides released from cells and influence intracellular signaling pathways, such as phospholipase C and adenylate cyclase signaling pathways. As P2Y receptor is vertebrate-specific and involved in head formation, we expect that its emergence may be related to the acquisition of vertebrate head during evolution. Here, we focused on the role of p2ry4 in early development in Xenopus laevis and found that p2ry4 was required for the establishment of the head organizer during neural induction and contributed to head formation. We showed that p2ry4 was expressed in the head organizer region and the prospective neuroectoderm at early gastrula stage, and was enriched in the head components. Disruption of p2ry4 function resulted in the small head phenotype and the reduced expression of marker genes specific for neuroectoderm and neural border at an early neurula stage. Furthermore, we examined the effect of p2ry4 disruption on the establishment of the head organizer and found that a reduction in the expression of head organizer genes, such as dkk1 and cerberus, and p2ry4 could also induce the ectopic expression of these marker genes. These results suggested that p2ry4 plays a key role in head organizer formation. Our study demonstrated a novel role of p2ry4 in early head development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号