首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The addition of extracellular ATP (exATP) to four Streptomyces strains had similar effects: low exATP levels stimulated antibiotic production and high levels reduced it. Compared with antibiotic production, the concentrations of intracellular ATP (inATP) in the tested strains were opposite, which suggests a role of inATP in regulating secondary metabolite production. Under inactivation of the polyphosphate kinase gene (ppk) in Streptomyces lividans, we observed the same results: when the inATP level in the mutant strain was lower than in the parent strain, more antibiotic was produced. Combining all the results, a strong inverse relationship between [inATP] and the secondary metabolite production is suggested by this study.  相似文献   

2.
The regulatory function of extracellular ATP (exATP) in bacteria is unknown, but recent studies have demonstrated exATP induced enhanced secondary metabolite production and morphological differentiation in Streptomyces coelicolor. The growth of Streptomyces coelicolor, however, was unaffected by exATP, although changes in growth are common phenotypes. To identify bacteria whose growth is altered by exATP, we measured exATP-induced population changes in fast-growing microbes and actinomycetes in compost. Compared with the water-treated control, the addition of 10 ml 100 μM ATP to 10 g of compost enhanced the actinomycetes population by 30% and decreased fast-growing microbial numbers by 20%. Eight microbes from each group were selected from the most populated colony, based on appearance. Of the eight isolated fast-growing microbes, the 16S rRNA sequences of three isolates were similar to the plant pathogens Serratia proteamaculans and Sphingomonas melonis, and one was close to a human pathogen, Elizabethkingia meningoseptica. The growth of all fast-growing microbes was inhibited by ATP, which was confirmed in Pseudomonas syringae DC3000, a pathogenic plant bacterium. The growth of six of eight isolated actinomycetes strains, all of which were identified as close to Streptomyces neyagawaensis, was enhanced by ATP treatment. This study suggests that exATP regulates bacterial physiology and that the exATP response system is a target for the control of bacterial ecology.  相似文献   

3.
4.
Metabolomics analysis of three Saccharopolyspora spinosa strains (wild type strain WT, ultraviolet mutant strain WH124, and metabolic engineering strain LU104) with different spinosad producing levels was performed by liquid chromatograph coupled to mass spectrometry (LC-MS). The metabolite profiles were subjected to hierarchal clustering analysis (HCA) and principal component analysis (PCA). The results of HCA on a heat map revealed that the large numbers of primary metabolism detected were more abundant in WH124 and less abundant in LU104 during the early fermentation stage as compared to the WT strain. PCA separated the three strains clearly and suggested nine metabolites that contributed predominantly to the separation. These biomarkers were associated with central carbon metabolism (succinic acid, α-ketoglutarate, acetyl-CoA, and ATP), amino acid metabolism (glutamate, glutamine, and valine), and secondary metabolism (pseudoaglycone), etc. These findings provide insight into the metabolomic characteristics of the two high-yield strains and for further regulation of spinosad production.  相似文献   

5.
A recombinant strain of S. clavuligerus (LHM100) that contains an additional copy of the gene (lat) encoding lysine -aminotransferase (LAT) was analyzed and compared to the wild-type for intracellular concentrations of primary metabolites involved in cephamycin C biosynthesis. This strain had been shown previously to produce higher levels of the antibiotic because of increased levels of LAT, a rate-limiting enzyme involved in the production of -amino-adipic acid. The results showed that the overall growth kinetics of the two strains were comparable, including the intracellular concentrations of cysteine, valine and lysine. In contrast, 60% higher antibiotic production was observed in LHM100, which reflected a significant temporal variation in specific metabolite production rate. The time profile of LAT activity was consistently higher in LHM100; however, -aminoadipic acid levels showed unexpected variation during the growth cycle. These results support the proposal that rate-limiting enzymes in cephamycin C biosynthesis are temporally controlled, and indicate that optimization of metabolite production will require differential overexpression of several biosynthetic genes.  相似文献   

6.
Taking advantage from the peculiar features of the embryonic rat heart‐derived myoblast cell line H9c2, the present study is the first to provide evidence for the expression of F1FO ATP synthase and of ATPase Inhibitory Factor 1 (IF1) on the surface of cells of cardiac origin, together documenting that they were affected through cardiac‐like differentiation. Subunits of both the catalytic F1 sector of the complex (ATP synthase‐β) and of the peripheral stalk, responsible for the correct F1‐FO assembly/coupling, (OSCP, b, F6) were detected by immunofluorescence, together with IF1. The expression of ATP synthase‐β, ATP synthase‐b and F6 were similar for parental and differentiated H9c2, while the levels of OSCP increased noticeably in differentiated cells, where the results of in situ Proximity Ligation Assay were consistent with OSCP interaction within ecto‐F1FO complexes. An opposite trend was shown by IF1 whose ectopic expression appeared greater in the parental H9c2. Here, evidence for the IF1 interaction with ecto‐F1FO complexes was provided. Functional analyses corroborate both sets of data. i) An F1FO ATP synthase contribution to the exATP production by differentiated cells suggests an augmented expression of holo‐F1FO ATP synthase on plasma membrane, in line with the increase of OSCP expression and interaction considered as a requirement for favoring the F1‐FO coupling. ii) The absence of exATP generation by the enzyme, and the finding that exATP hydrolysis was largely oligomycin‐insensitive, are in line in parental cells with the deficit of OSCP and suggest the occurrence of sub‐assemblies together evoking more regulation by IF1. J. Cell. Biochem. 9999: 1–13, 2015. © 2015 Wiley Periodicals, Inc. J. Cell. Biochem. 117: 470–482, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
The aromatic polyketide antibiotic, oxytetracycline (OTC), is produced by Streptomyces rimosus as an important secondary metabolite. High level production of antibiotics in Streptomycetes requires precursors and cofactors which are derived from primary metabolism; therefore it is exigent to engineer the primary metabolism. This has been demonstrated by targeting a key enzyme in the oxidative pentose phosphate pathway (PPP) and nicotinamide adenine dinucleotide phosphate (NADPH) generation, glucose-6-phosphate dehydrogenase (G6PDH), which is encoded by zwf1 and zwf2. Disruption of zwf1 or zwf2 resulted in a higher production of OTC. The disrupted strain had an increased carbon flux through glycolysis and a decreased carbon flux through PPP, as measured by the enzyme activities of G6PDH and phosphoglucose isomerase (PGI), and by the levels of ATP, which establishes G6PDH as a key player in determining carbon flux distribution. The increased production of OTC appeared to be largely due to the generation of more malonyl-CoA, one of the OTC precursors, as observed in the disrupted mutants. We have studied the effect of zwf modification on metabolite levels, gene expression, and secondary metabolite production to gain greater insight into flux distribution and the link between the fluxes in the primary and secondary metabolisms.  相似文献   

8.
The glass beads cultivation system developed in our laboratory for physiological studies of filamentous microorganisms supports differentiation and allows complete recovery of bacterial colonies and their natural products from cultivation plates. Here, we used this system to study the global effect of ppk gene disruption in Streptomyces lividans. The ppk encoding the enzyme polyphosphate kinase (P) catalyses the reversible polymerisation of gamma phosphate of ATP to polyphosphates. The resulting are phosphate and energy stock polymers. Because P activity impacts the overall energetic state of the cell, it is also connected to secondary metabolite (e.g. antibiotic) biosynthesis. We analysed the global effects of the disruption of this gene including its influence on the production of pigmented antibiotics, on morphological differentiation, on the levels of ATP and on the whole cytoplasmic protein expression pattern of S. lividans. We observed that the S. lividans ppk mutant produced antibiotics earlier and in greater amount than the wild-type (wt) strain. On the other hand, we did not observe any obvious effect on colony morphological development. In agreement with the function of Ppk, we detected much lower levels of ATP in ppk- mutant than in the wt strain. Proteomic analysis revealed that the genes that were influenced by ppk inactivation included enzymes involved in carbon or nitrogen metabolism, phosphate transport and components of the cell translational machinery. We showed that the synthesis of translation elongation factor Tu is during sporulation much higher in ppk- mutant than in wild-type strain.  相似文献   

9.
Along with traditional random mutagenesis-driven strain improvement, cloning and heterologous expression of Streptomyces secondary metabolite gene clusters have become an attractive complementary approach to increase its production titer, of which regulation is typically under tight control via complex multiple regulatory networks present in a metabolite low-producing wild-type strain. In this study, we generated a polyketide non-producing strain by deleting the entire actinorhodin cluster from the chromosome of a previously generated S. coelicolor mutant strain, which was shown to stimulate actinorhodin biosynthesis through deletion of two antibiotic downregulators as well as a polyketide precursor flux downregulator (Kim et al. in Appl Environ Microbiol 77:1872–1877, 2011). Using this engineered S. coelicolor mutant strain as a surrogate host, a model minimal polyketide pathway for aloesaponarin II, an actinorhodin shunt product, was cloned in a high-copy conjugative plasmid, followed by functional pathway expression and quantitative metabolite analysis. Aloesaponarin II production was detected only in the presence of a pathway-specific regulatory gene, actII-ORF4, and its production level was the highest in the actinorhodin cluster-deleted and downregulator-deleted mutant strain, implying that this engineered polyketide pathway-free and regulation-optimized S. coelicolor mutant strain could be used as a general surrogate host for efficient expression of indigenous or foreign polyketide pathways derived from diverse actinomycetes in nature.  相似文献   

10.
Summary Production of a lipopeptide antibiotic surfactin was carried out using a recombinantBacillus subtilis. Surfactin yield of the recombinant strain was about one and half times as much as that ofBacillus subtilis RB 14, the strain in which the surfactin gene was originated. This system is especially noteworthy because a recombinant strain surpassed the original strain in the production of a bacterial antibiotic as a secondary metabolite of the bacterium.  相似文献   

11.
Pochonins are antiviral and antiparasitic resorcylic acid lactones (RAL) structurally related to monorden. They were found in the invertebrate-associated fungus Pochonia chlamydosporia. Their production and distribution was studied by means of High Performance Liquid Chromatography with UV-visual and mass spectrometric detection (HPLC-UV/Vis and HPLCMS) in cultures of Pochonia species and further conidial fungi with Verticillium-like anamorphs that had until recently been included in Verticillium sect. Prostrata. The results support the recent generic segregation by Gams, Zare and co-workers because pochonins were found to occur exclusively in species of the genus Pochonia. With few exceptions, the production of RAL appeared to be a rather constant feature in cultures of P. chlamydosporia from around the world. According to preliminary results, secondary metabolite profiles in strains of allied genera such as Lecanicillium, Haptocillium and Rotiferophthora are different from those encountered in Pochonia. The alkaloid pseurotin A was found as main metabolite in several of the P. chlamydosporia isolates examined. As inferred from HPLC profiling data, strains of P. suchlasporia clustered into at least three chemotypes. The ex-type strain of P. suchlasporia var. catenata produced monorden, while several other strains produced metabolites whose HPLC-UV and HPLC-MS characteristics were similar to the mycotoxins, aurovertin B and citreoviridin A. Yet different metabolites were detected in a third chemotype of P. suchlasporia. Differences in secondary metabolite profiles were also found in two strains of P. bulbillosa. While the ex-type strain was found devoid of all aforementioned compounds, CBS 247.68 contained the aurovertin-related metabolites detected in part of the P. suchlasporia isolates. The sequence of the ITS nrDNA of CBS 247.68 was different from that of the type strain but identical to the sequences of P. suchlasporia var. catenata. Several strains of the latter variety showed identical sequences, despite considerable variations in their HPLC metabolite profiles. Minisatellite PCR fingerprinting was found useful to segregate Pochonia at species and strain level, pointing toward the existence of further, cryptic species. The possible chemotaxonomical importance and ecological functions of secondary metabolites in these fungi is discussed.  相似文献   

12.
Microbial superhost strains should provide an ideal platform for the efficient homologous or heterologous phenotypic expression of biosynthetic gene clusters (BGCs) of new and novel bioactive molecules. Our aim in the current study was to perform a comparative study at the bioprocess and metabolite levels of the previously designed superhost strain Streptomyces coelicolor M1152 and its derivative strain S. coelicolor M1581 heterologously expressing chloramphenicol BGC. Parent strain M1152 was characterized by a higher specific growth rate, specific CO2 evolution rate, and a higher specific l -glutamate consumption rate as compared with M1581. Intracellular primary central metabolites (nucleoside/sugar phosphates, amino acids, organic acids, and CoAs) were quantified using four targeted LC-MS/MS-based methods. The metabolite pathways in the nonantibiotic producing S. coelicolor host strain were flooded with carbon from both carbon sources, whereas in antibiotic-producing strain, the carbon of l -glutamate seems to be draining out through excreting synthesized antibiotic. The 13C-isotope-labeling experiments revealed the bidirectionality in the glycolytic pathway and reversibility in the non-oxidative part of PPP even with continuous uptake of d -glucose. The change in the primary metabolites due to the insertion of BGC disclosed a clear linkage between the primary and secondary metabolites.  相似文献   

13.
Marine actinomycetes have generated much recent interest as a potentially valuable source of novel antibiotics. Like terrestrial actinomycetes the marine actinomycetes are shown here to produce mycothiol as their protective thiol. However, a novel thiol, U25, was produced by MAR2 strain CNQ703 upon progression into stationary phase when secondary metabolite production occurred and became the dominant thiol. MSH and U25 were maintained in a reduced state during early stationary phase, but become significantly oxidized after 10 days in culture. Isolation and structural analysis of the monobromobimane derivative identified U25 as a homolog of mycothiol in which the acetyl group attached to the nitrogen of cysteine is replaced by a propionyl residue. This N-propionyl-desacetyl-mycothiol was present in 13 of the 17 strains of marine actinomycetes examined, including five strains of Salinispora and representatives of the MAR2, MAR3, MAR4 and MAR6 groups. Mycothiol and its precursor, the pseudodisaccharide 1-O-(2-amino-2-deoxy-α-d-glucopyranosyl)-d-myo-inositol, were found in all strains. High levels of mycothiol S-conjugate amidase activity, a key enzyme in mycothiol-dependent detoxification, were found in most strains. The results demonstrate that major thiol/disulfide changes accompany secondary metabolite production and suggest that mycothiol-dependent detoxification is important at this developmental stage.  相似文献   

14.
Recent publications indicate that inter-specific interactions between soil bacteria may strongly affect the behavior of the strains involved, e.g., by increased production of antibiotics or extracellular enzymes. This may point at an enhanced competitive ability due to inter-specific triggering of gene expression. However, it is not known if such inter-specific interactions also occur during competition for carbon which is the normal situation in soil. Here, we report on competitive interactions between two taxonomically non-related bacterial strains, Pseudomonas sp. A21 and Pedobacter sp. V48, that were isolated from a dune soil. The strains showed strong effects on each other’s behavior and gene expression patterns when growing together under carbon-limited conditions on agar. The most pronounced observed visual changes in mixed cultures as compared to monocultures were (1) strong inhibition of a bioindicator fungus, suggesting the production of a broad-spectrum antibiotic, and (2) the occurrence of gliding-like movement of Pedobacter cells. Two independent techniques, namely random arbitrary primed-PCR (RAP-PCR) and suppressive subtractive hybridization (SSH), identified in total 24 genes that had higher expression in mixed cultures compared to monocultures. Microbial interactions were clearly bidirectional, as differentially expressed genes were detected for both bacteria in mixed cultures. Sequence analysis of the differentially expressed genes indicated that several of them were most related to genes involved in motility and chemotaxis, secondary metabolite production and two-component signal transduction systems. The gene expression patterns suggest an interference competition strategy by the Pseudomonas strain and an escape/explorative strategy by the Pedobacter strain during confrontation with each other. Our results show that the bacterial strains can distinguish between intra- and inter-specific carbon competition.  相似文献   

15.
Regulation of biosynthesis of secondary metabolites   总被引:5,自引:0,他引:5  
The ATP concentration was measured by the luciferase method during cultivation of two strains ofStreptomyces aureofaciens (a low-production and a production strain) producing chlortetracycline. The intracellular ATP concentration was found to be much higher in the low-production strain than in the production strain. The role of ATP in regulatory mechanisms is discussed in relation to the biosynthesis of the antibiotic.  相似文献   

16.
Forty-one isolates ofFusarium sambucinum sensu lato were screened for production of secondary metabolites in agar cultures. Of 16 strains ofF. sambucinum sensu stricto all but two strains produced diacetoxyscirpenol and two unidentified metabolites, TB1 and TB2 respectively. The two remainingF. sambucinum strains produced T-2 toxin, TB1 and TB2.Fusarium venenotum (6 strains) produced diacetoxyscirpenol and an unidentified metabolite BB.Fusarium torulosum (8 strains) produced wortmannin and antibiotic Y. The three species could be differentiated by their pattern of identified and unidentified metabolites detected by agar plug TLC combined with chemical data from HPLC-diode array detection of fungal extracts, and data on growth rates on potato sucrose agar and tannin sucrose agar.  相似文献   

17.
18.
Aims:  Daptomycin, one of the A21978C factors produced by Streptomyces roseosporus, is an acidic cyclic lipopeptide antibiotic with potent activity against a variety of Gram‐positive pathogens. To increase the titre of this extensively used and clinically important antibiotic, we applied a reported‐guided rpsL mutation selection system to generate strains producing high levels of A21978C. Methods and Results:  In the reporter design, dptE was chosen as the overexpressing target, and neo‐encoding neomycin phosphotransferase as the reporter. Using this reporter‐guided selection system, 20% of the selected, streptomycin‐resistant mutants produced greater amounts of A21978C than the starting strain. The selection system increased the screening efficiency about 10‐fold with a frequency of 1·7% A21978C overproducing strains among strr mutants. A21978C production was increased approximately 2·2‐fold in the rpsL K43N mutant. Conclusions:  The combination of ribosome engineering and reporter‐guided mutant selection generated an A21978C overproducing strain that produced about twice as much A21978C as the parental strain. Significance and Impact of the Study:  The strategies presented here, which integrated the advantages of both ribosome engineering and reporter‐guided mutation selection, could be applied to other bacteria to improve their yield of secondary metabolites.  相似文献   

19.
Natural products discovery from actinomycetes has been on the decline in recent years, and has suffered from a lack of innovative ways to discover new secondary metabolites within a background of the thousands of known compounds. Recent advances in whole genome sequencing have revealed that actinomycetes with large genomes encode multiple secondary metabolite pathways, most of which remain cryptic. One approach to address the expression of cryptic pathways is to first identify novel pathways by bioinformatics, then clone and express them in well-characterized hosts with known secondary metabolomes. This process should eliminate the tedious dereplication process that has hampered natural products discovery. Several laboratory and industrial production strains have been used for heterologous production of secondary metabolite pathways. This review discusses the results of these studies, and the pros and cons of using various Streptomyces and one Saccharopolyspora strain for heterologous expression. This information should provide an experimental basis to help researchers choose hosts for current application and future development to express heterologous secondary metabolite pathways in yields sufficient for rapid scale-up, biological testing, and commercial production.  相似文献   

20.
利用抗菌及卤虫致死活性模型,从中国南海海底沉积物来源的微生物中筛选到2株放线菌SCSIO WJ01和SCSIO ZJ63,其发酵产物具有较强活性,经16S rRNA基因序列分析这2株放线菌均为异壁放线菌Actinoalloteichus sp.。HPLC-DAD分析显示2株放线菌能产生同一个主要的次级代谢产物,通过正相硅胶柱色谱、反相中压柱色谱、半制备高效液相色谱等手段,从SCSIO WJ01的发酵产物中分离获得了该化合物,运用ESI-MS、1H及13C NMR波谱分析鉴定为浅蓝霉素A(Caerulomycin A)。此外,还从SCSIO WJ01的发酵产物中分离鉴定了浅蓝霉素D。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号