首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Previously we isolated six actinomycetes strains, 9-4, 10-1, 10-2, 10-3, 10-6, and 21-4, that produce phospholipase D (PLD) with high transphosphatidylation activity. In this study, we identified these strains, and the PLD activities were compared with those of reference strains. 16S rDNA sequences and DNA–DNA hybridization tests indicated taxonomic affiliations of strain 9-6 with Streptomyces senoensis, strains 10-1 and 10-6 with S. vinaceus, and strains 10-2 and 10-3 with S. racemochromogenes. Strain 21-4, though identified as a Streptomyces sp., could not be identified with any known species. Meanwhile, most of the culture supernatants of reference strains demonstrated no or very weak PLD activity, while those of our strains exhibited significantly higher activity. All of the strains in this study were identified as Streptomyces species. The PLD activity of our strains exceeded most of the reference Streptomyces strains. The findings in this study imply that the Streptomyces strains, although they are members of the same species, can produce different quantities of PLD enzyme.  相似文献   

2.
Many Streptomyces strains are known to produce valinomycin (VLM) antibiotic and the VLM biosynthetic gene cluster (vlm) has been characterized in two independent isolates. Here we report the phylogenetic relationships of these strains using both parsimony and likelihood methods, and discuss whether the vlm gene cluster shows evidence of horizontal transmission common in natural product biosynthetic genes. Eight Streptomyces strains from around the world were obtained and sequenced for three regions of the two large nonribosomal peptide synthetase genes (vlm1 and vlm2) involved in VLM biosynthesis. The DNA sequences representing the vlm gene cluster are highly conserved among all eight environmental strains. The geographic distribution pattern of these strains and the strict congruence between the trees of the two vlm genes and the housekeeping genes, 16S rDNA and trpB, suggest vertical transmission of the vlm gene cluster in Streptomyces with no evidence of horizontal gene transfer. We also explored the relationship of the sequence of vlm genes to that of the cereulide biosynthetic genes (ces) found in Bacillus cereus and found them highly divergent from each other at DNA level (genetic distance values≥95.6%). It is possible that the vlm gene cluster and the ces gene cluster may share a relatively distant common ancestor but these two gene clusters have since evolved independently.  相似文献   

3.
This investigation aimed to determine the relatedness of dominant occurring soil Streptomyces spp. in Northern Jordan based on their RAPD-PCR fingerprints, and to compare RAPD technique with the conventional phenotypic characterization of Streptomyces isolates. Fifty-eight white and gray color-bearing aerial mycelia antibiotic active-producing Streptomyces soil isolates along with three reference strains were genetically analyzed by RAPD-PCR. Polymorphisms between the isolates showed 1 to 10 bands per isolate and ranged from 200 to 3200 bp in size. Results revealed one common band of ~600 bp shared by ~85% of the isolates, and the observation of bands specific to some reference strains and some soil isolates. When RAPD patterns were analyzed with the UPGMA, results revealed clustering the tested isolates into two equal main super clusters (50% each). Super cluster I appeared to be homogenous and include the three reference strains. However, super cluster II was heterogeneous and but not including any of the reference strains. The association of the antibiotic activity of the dominant white and gray aerial mycelium-bearing Streptomyces isolates to RAPD clustering is reported for the first time, and the RAPD-PCR fingerprints generated here deserve to be cloned, characterized and sequenced in future as Streptomyces species-specific DNA markers. The more random primers used in the analysis may add to RAPD technique a cost-effective, fast, precise result, and less labor work solution for analyzing the similarities and differences among the Streptomyces isolates.  相似文献   

4.
The taxonomic positions of soil isolates known as Streptomyces groups A, B and C were clarified. Comparative 16S rDNA sequence studies indicated that representatives of all three taxa formed distinct phyletic lines within the Streptomyces tree though the group A strains were shown to be related to Streptomyces griseus and associated validly described species. The taxonomic integrity of all three groups was highlighted by DNA:DNA relatedness and ribotype data though the group A strains encompassed a higher degree of genetic variation than the group B and C strains. In light of these and earlier phenotypic data it is proposed that Streptomyces groups A, B and C be given species status as Streptomyces sanglieri sp. nov., Streptomyces aureus sp. nov. and Streptomyces laceyi sp. nov., respectively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
【背景】对抗生素生物合成途径的阐明有助于提高目标化合物的产量并开发具有更高活性的新化合物。基因的同框缺失是天然产物生物合成研究的常规手段,通过分析突变菌株积累的中间产物,可以帮助推导天然产物的合成途径及相关基因的功能。天然产物生物合成基因簇的大小一般在20 kb以上,对每个基因进行同框缺失耗时耗力,因此,优化链霉菌来源的基因同框缺失的方法有重要的意义。【目的】基于PCR-targeting重新设计了一套在链霉菌柯斯文库质粒上进行基因同框缺失的方法,实现链霉菌基因在大肠杆菌中快速、高效的基因同框缺失的技术体系。【方法】使用氨苄青霉素抗性基因bla作为PCR-targeting DNA片段的筛选标记,同时使用体外的Pac I酶切和酶连系统代替体内的Flp/FRT系统来介导同框缺失的构建。【结果】利用这种方法,在6 d内完成了米多霉素生物合成基因簇中14个基因的同框缺失。【结论】此方法与传统的PCR-targeting方法相比,构建同框缺失载体的效率明显提高;Pac I识别序列在链霉菌基因组上的稀有性使得此方法在构建抗生素生物合成基因簇必需基因的同框缺失载体上具有普适性。  相似文献   

6.
With few exceptions, thaxtomin A (ThxA), a nitrated diketopiperazine, is the pathogenicity determinant for plant‐pathogenic Streptomyces species. In Streptomyces scabiei (syn. S. scabies), the ThxA biosynthetic cluster is located within a 177‐kb mobile pathogenicity island (PAI), called the toxicogenic region (TR). In S. turgidiscabies, the ThxA biosynthetic cluster is located within a 674‐kb pathogenicity island (PAIst). The emergence of new plant pathogens occurs in this genus, but not frequently. This raises the question of whether the mobilization of these pathogenicity regions, through mating, is widespread and whether TR and PAIst can confer plant pathogenicity. We showed that ThxA biosynthetic clusters on TR and PAIst were transferred into strains from five non‐pathogenic Streptomyces species through mating with S. scabiei and S. turgidiscabies. However, not all of the transconjugants produced ThxA and exhibited the virulence phenotype, indicating that the genetic background of the recipient strains affects the functionality of the ThxA biosynthetic cluster and therefore would be expected to affect the emergence of novel pathogenic Streptomyces species. Thxs have been patented as natural herbicides, but have yet to be commercialized. Our results also demonstrated the potential of the heterologous production of ThxA as a natural and biodegradable herbicide in non‐pathogenic Streptomyces species.  相似文献   

7.
Genes for biosynthesis of a Streptomyces sp. FR-008 heptaene macrolide antibiotic with antifungal and mosquito larvicidal activity were cloned in Escherichia coli using heterologous DNA probes. The cloned genes were implicated in heptaene biosynthiesis by gene replacement. The FR-008 antibiotic contains a 38-membered, poiyketide-derived macrolide ring. Southern hybridization using probes encoding domains of the type i modular erythromycin polyketide synthase (PKS) showed that the Streptomyces sp. FR-008 PKS gene cluster contains repeated sequences spanning c. 105 kb of contiguous DNA; assuming c. 5 kb for each PKS module, this is in striking agreement with the expectation for the 21-step condensation process required for synthesis of the FR-008 carbon chain. The methods developed for transformation and gene replacement in Streptomyces sp. FR-008 make it possible to genetically manipulate polyene macrolide production, and may later lead to the biosynthesis of novel polyene macrolides.  相似文献   

8.
Summary A total of 94 actinomycete strains were isolated from the marine sediments of a shrimp farm, 87.2% belonged to the genus Streptomyces, others were Micromonospora spp. Fifty-one percent of the actinomycete strains showed activity against the pathogenic Vibrio spp. strains. Thirty-eight percent of marine Streptomyces strains produced siderophores on chrome azurol S (CAS) agar plates. Seven strains of Streptomyces were found to produce siderophores and to inhibit the growth of Vibrio spp. in vitro. Two of them belonged to the Cinerogriseus group, the most frequently isolated group of Streptomyces. The results showed that streptomycetes could be a promising source for biocontrol agents in aquaculture.  相似文献   

9.
A plasmid, pGB112, has recently been developed to transfer DNA from Escherichia coli to Streptomyces spp via conjugation. This technique made use of (A) E. coli replicon, (B) ampicillin (amp) resistance gene for selection in E. coli and thiostrepton (tsr) resistance gene for selection in Streptomyces, (C) a fragment of SCP2* replicon, (D) a 2.6 kb fragment of tra-cassette which consists of pIJ101 transfer gene (tra) and two ermE promoters, (E) a 0.8 kb fragment of oriT of (IncP) RK2. The results showed that this plasmid was able to transfer plasmid DNA from E. coli to Streptomyces coelicolor via conjugation, and that it could also transfer DNA between Streptomyces strains. Since this plasmid has both pBR322 and SCP2* replicons, it may provide a novel and useful method for genetic operation in E. coli and Streptomyces.An erratum to this article can be found at  相似文献   

10.
Streptomyces spp. are robust producers of medicinally-, industrially- and agriculturally-important small molecules. Increased resistance to antibacterial agents and the lack of new antibiotics in the pipeline have led to a renaissance in natural product discovery. This endeavor has benefited from inexpensive high quality DNA sequencing technology, which has generated more than 140 genome sequences for taxonomic type strains and environmental Streptomyces spp. isolates. Many of the sequenced streptomycetes belong to the same species. For instance, Streptomyces albus has been isolated from diverse environmental niches and seven strains have been sequenced, consequently this species has been sequenced more than any other streptomycete, allowing valuable analyses of strain-level diversity in secondary metabolism. Bioinformatics analyses identified a total of 48 unique biosynthetic gene clusters harboured by Streptomyces albus strains. Eighteen of these gene clusters specify the core secondary metabolome of the species. Fourteen of the gene clusters are contained by one or more strain and are considered auxiliary, while 16 of the gene clusters encode the production of putative strain-specific secondary metabolites. Analysis of Streptomyces albus strains suggests that each strain of a Streptomyces species likely harbours at least one strain-specific biosynthetic gene cluster. Importantly, this implies that deep sequencing of a species will not exhaust gene cluster diversity and will continue to yield novelty.  相似文献   

11.
Nine strains isolated from mycetoma patients and received as Streptomyces somaliensis were the subject of a polyphasic taxonomic study. The organisms shared chemical markers consistent with their classification in the genus Streptomyces and formed two distinct monophyletic subclades in the Streptomyces 16S rRNA gene tree. The first subclade contained four organisms, including the type strain of S. somaliensis, and the second clade the remaining five strains which had almost identical 16S rRNA sequences. Members of the two subclades were sharply separated using DNA:DNA relatedness and phenotypic data which also showed that the subclade 1 strains formed an heterogeneous group. In contrast, the subclade 2 strains were assigned to a single genomic species and had identical phenotypic profiles. It is evident from these data that the subclade 2 strains should be recognised as a new species of Streptomyces. The name proposed for this new species is Streptomyces sudanensis sp. nov. The type strain is SD 504T (DSM = 41923T = NRRL B-24575T). Erika T. Quintana and Katarzyna Wierzbicka contributed equally to this work. The GenBank accession numbers for the 16S rRNA gene sequences of Streptomyces somaliensis DSM 40738T and Streptomyces sudanensis DSM 41607, DSM 41608, DSM 41609, SD 504T and SD 509 are EF540897, EF540898, EF540999, EF515876 and EF540900.  相似文献   

12.
Summary DNA isolated from a Streptomyces strain produced by interspecific protoplast fusion of Streptomyces jumonjinensis and Streptomyces lipmanii contained a tandemly repeated six kilobase pair sequence which constituted 15%–18% of the total DNA. Examination of other strains produced by similar fusions showed that they also contained reiterated DNA sequences.  相似文献   

13.
Uhm TB  Lee SH 《Biotechnology letters》2003,25(11):883-886
By examining the conserved regions in the protein sequences of eight different Streptomyces phospholipase Ds (PLD) reported so far and the X-ray crystallographic structure of a Streptomyces PLD, we designed a peptide sequence, DPANRGAVGSGGYSQIKSL, for the screening of microorganisms producing PLD. In the enzyme-linked immunosorbent assay using a mouse antibody raised against the designed peptide, we recovered seven producing strains out of 128 soil isolates.  相似文献   

14.
Biological control of maize seed pathogenic fungi by use of actinomycetes   总被引:4,自引:0,他引:4  
The effectiveness of twoStreptomyces spp. strains to controlpathogenic fungi was studied in stored maizegrain. The treatments included seeddisinfection and inoculation withStreptomyces spp. strains previously isolatedfrom maize rhizosphere. Actinomycete inoculumconsisted of filtered suspension and totalsuspension of fermentor-producedStreptomyces spp. strains biomass. Treatmentswith Streptomyces spp. strains aloneeffectively suppressed the development ofAspergillus spp., Curvularia lunata, andDrechslera maydis and significantly(p < 0,05) reduced the incidence ofFusarium subglutinans and Cephalosporiumacremonium. Among the inoculation treatments,nondisinfested seed inoculated with filteredsuspension was the only treatment that did notsuppress the development of Penicilliumspp. Maize seed inoculation with totalsuspension of strains was the most effectivetreatment to control the incidence of seedpathogenic fungi. The development of theDiplodia maydis was only suppressed by thecombination of seed disinfection andinoculation with total suspension of strains.Although, the strain DAUFPE 11470 showed thegreatest effectiveness for controlling thefungi pathogenic to seed, root and shootdevelopment was reduced by treatment with thisstrain.The results indicate thatStreptomyces spp. strains reduce the incidenceof seed pathogenic fungi and have potential asa biological control agent. However, an efficient methodof seed treatment with the biological controlagent must be developed before it can become anagricultural practice.  相似文献   

15.
Five strains of Streptomyces sp. were evaluated in vitro for their ability of inhibiting the mycelial growth of Macrophomina phaseolina, the causal agent of root rot of mung bean (Vigna radiata L.). Among the Streptomyces sp. strains tested, PDK showed the maximum in vitro inhibition of mycelial growth of M. phaseolina and recorded an inhibition zone of 21?mm. The strains CBE, MDU, SA and ANR recorded inhibition zones of 18, 16, 13 and 11?mm, respectively. These Streptomyces sp. strains were tested for their growth-promoting efficiency on mung bean seedlings. Among them, CBE and PDK recorded the maximum increase in shoot length, root length and seedling vigour compared with control, followed by MDU. Three Streptomyces sp. strains (CBE, MDU and PDK) that showed higher levels of inhibition of growth of M. phaseolina in dual culture assay and plant growth-promoting activity were tested for their biocontrol activity against root rot under greenhouse and field conditions. Seed treatment or soil application with powder formulation of Streptomyces sp. strains CBE, MDU and PDK was effective in controlling root rot disease; but, combined application through seed and soil increased the efficacy in both the greenhouse and field trials. Among the treatments, seed treatment plus soil application with powder formulation of Streptomyces sp. strain CBE proved to be most effective, which reduced the root rot incidence from 26.8% (with non-bacterised seeds) to 4.0% in Trial I and from 32.0 to 4.9% in Trial II. The above treatment recorded the highest yield in both the field trials, and the yield increase was 78 and 74% over control in Trial I and Trial II, respectively. Isozyme analysis of the Streptomyces sp.-treated plants indicates that seed treatment plus soil application strongly induce the activities of peroxidase (PO-1 and PO-2) and polyphenol oxidase (PPO-2 and PPO-3) in mung bean. Among the three strains tested, Streptomyces sp. strain MDU- treated plants showed higher levels of activities of PO and PPO. Based on the above findings, it can be concluded that both the direct inhibition of pathogen and induced resistance might be involved in the control of root rot of mung bean by Streptomyces sp.  相似文献   

16.
Streptomyces species have a linear chromosome of approximately 8 Mb in size. Many strains also carry linear plasmids. Most of these linear elements contain terminal proteins covalently bound to the 5 ends of the DNA. Using a method for the visualisation of terminal DNA fragments in agarose gels, it was possible to see three fragments in S. rimosus and five fragments in S. avermitilis. The method was also used to clone the 298 bp BamHI fragment carrying the left end of plasmid SLP2. Analysis of the sequence showed that the end resembled other Streptomyces chromosome and plasmid ends, but there were eight palindromes (instead of seven) and a tandem duplication of a 14 bp sequence.  相似文献   

17.
Scab disease significantly damages potatoes and other root crops. Some Streptomyces species have been reported as potato-scab pathogens. Identification of the phytopathogenic Streptomyces is mainly done on the basis of the 16S rRNA gene, but use of this gene has some limitations for discriminating these strains because they share high similarities of 16S rRNA gene sequences. We tested the RNase P RNA (rnpB) gene as a taxonomic marker to clarify the relationship among closely related scab-causing Streptomyces strains. The rnpB genes were analyzed for 41 strains including 9 isolates from Jeju, Korea. There were 4 highly variable regions including nucleotide gaps in the rnpB genes. Interspecies similarity of the rnpB gene in tested Streptomyces strains was lower than about 97%, while the intraspecies similarity was higher than about 98%. Phylogenetic analysis demonstrated that the rnpB tree has similar topology to the 16S rRNA gene tree, but produces a more divergent phyletic lineage. These results revealed that the rnpB gene could be used as a powerful taxonomic tool for rapid differentiation of closely related Streptomyces species. In addition, it was also suggested that the variable regions marked as α, β, γ, and δ in the rnpB gene could be useful markers for the detection of specific Streptomyces species.  相似文献   

18.
The gene queD encoding quercetinase of Streptomyces sp. FLA, a soil isolate related to S. eurythermus T, was identified. Quercetinases catalyze the 2,4-dioxygenolytic cleavage of 3,5,7,3′,4′-pentahydroxyflavone to 2-protocatechuoylphloroglucinol carboxylic acid and carbon monoxide. The queD gene was expressed in S. lividans and E. coli, and the recombinant hexahistidine-tagged protein (QueDHis6) was purified. Several flavonols were converted by QueDHis6, whereas CO formation from the 2,3-dihydroflavonol taxifolin and the flavone luteolin were not observed. In contrast to bicupin quercetinases from Aspergillus japonicus and Bacillus subtilis, and bicupin pirins showing quercetinase activity, QueD of strain FLA is a monocupin exhibiting 35.9% sequence identity to the C-terminal domain of B. subtilis quercetinase. Its native molecular mass of 63 kDa suggests a multimeric protein. A queD-specific probe hybridized with fragments of genomic DNA of four other quercetin degrading Streptomyces strains, but not with DNA of B. subtilis. Potential ORFs upstream of queD probably code for a serine protease and an endoribonuclease; two ORFs downstream of queD may encode an amidohydrolase and a carboxylesterase. This arrangement suggests that queD is not part of a catabolic gene cluster. Quercetinases might play a major role as detoxifying rather than catabolic enzymes.  相似文献   

19.
Antibiotic‐producing microorganisms have evolved several self‐resistance mechanisms to prevent auto‐toxicity. Overexpression of specific transporters to improve the efflux of toxic antibiotics has been found one of the most important and intrinsic resistance strategies used by many Streptomyces strains. In this work, two ATP‐binding cassette (ABC) transporter‐encoding genes located in the natamycin biosynthetic gene cluster, scnA and scnB, were identified as the primary exporter genes for natamycin efflux in Streptomyces chattanoogensis L10. Two other transporters located outside the cluster, a major facilitator superfamily transporter Mfs1 and an ABC transporter NepI/II were found to play a complementary role in natamycin efflux. ScnA/ScnB and Mfs1 also participate in exporting the immediate precursor of natamycin, 4,5‐de‐epoxynatamycin, which is more toxic to S. chattanoogensis L10 than natamycin. As the major complementary exporter for natamycin efflux, Mfs1 is up‐regulated in response to intracellular accumulation of natamycin and 4,5‐de‐epoxynatamycin, suggesting a key role in the stress response for self‐resistance. This article discusses a novel antibiotic‐related efflux and response system in Streptomyces, as well as a self‐resistance mechanism in antibiotic‐producing strains.  相似文献   

20.
Streptomyces sp. linear plasmids and linear chromosomes usually contain conserved terminal palindromic sequences bound by the conserved telomeric proteins Tap and Tp, encoded by the tap and tpg genes, respectively, as well as plasmid loci required for DNA replication in circular mode when the telomeres are deleted. These consist of iterons and an adjacent rep gene. By using PCR, we found that 8 of 17 newly detected linear plasmids in Streptomyces strains lack typical telomeric tap and tpg sequences. Instead, two novel telomeres in plasmids pRL1 and pRL2 from the eight strains and one conserved telomere in pFRL1 from the other strains were identified, while multiple short palindromes were also found in the plasmids. The complete nucleotide sequence of pRL2 revealed a gene encoding a protein containing two domains, resembling Tap of Streptomyces and a helicase of Thiobacillus, and an adjacent gene encoding a protein similar to Tpg of Streptomyces and a portion of the telomere terminal protein pTP of adenoviruses. No typical iterons-rep loci were found in the three plasmids. These results indicate an unexpected diversity of telomere palindromic sequences and replication genes among Streptomyces linear plasmids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号