首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the detergent industry, fungal endoglucanases are used to release microfibrils from the surfaces of dyed cellulosic fabrics to enhance color brightness. Family 45 endoglucanase (glycoside hydrolase family 45, GH45) EGL3 from Humicola grisea is more resistant to anionic surfactants and oxidizing agents than family 45 endoglucanase RCE1 from Rhizopus oryzae, while in the present study, a catalytic domain of RCE1 had higher defibrillation activity on dyed cotton fabrics than did that of EGL3. To identify the amino acid regions involved in these properties, we compared the characteristics of RCE1, EGL3, and three chimeric endoglucanases, in which each of the three regions of the catalytic domain of EGL3 was replaced by the corresponding region of the catalytic domain of RCE1. Amino acids in the N-terminal region were involved in resistance to anionic surfactants and oxidizing agents. Furthermore, amino acids in the region adjacent to the N-terminal region were involved in releasing microfibrils and in binding to dyed cotton fabrics, indicating that the binding of the amino acids in this region might be important in the release of microfibrils from dyed cotton fabrics.  相似文献   

2.
In the detergent industry, fungal endoglucanases have been used to release microfibrils (defibrillation) from the surface of dyed cellulosic fabrics to enhance color brightness. Although endoglucanases for laundry use must have various properties, such as a neutral or alkaline optimum pH, resistance to anionic surfactants and oxidizing agents (main components in detergents), and high defibrillation activity, all-purpose endoglucanases have not been obtained yet. As a result of screening of endoglucanases, a new family 45 endoglucanase (family 45 glycoside hydrolase), designated STCE1, was obtained and purified to apparent homogeneity from the culture supernatant of Staphylotrichum coccosporum NBRC 31817. The molecular mass of STCE1 was 49 kDa. The optimum pH for the carboxymethyl cellulase activity of STCE1 was 6.0, and the optimum temperature was 60 degrees C. STCE1 was highly resistant to an anionic surfactant and an oxidizing agent. Furthermore, the defibrillation activities on dyed cotton and lyocell fabrics of STCE1 were higher than those of the other representative endoglucanases tested. These results indicate that STCE1 is an all-purpose enzyme for laundry use. A gene encoding STCE1, designated the stce1 gene, was cloned from S. coccosporum, and the complete sequence was determined. STCE1 consisted of three distinct domains: an N-terminal catalytic domain (family 45), a linker domain, and a C-terminal carbohydrate-binding module (family 1). The amino acid sequences of the catalytic domain of STCE1 were phylogenetically close to those of the family 45 endoglucanases EGL3, EGL4, and EGV from a Humicola sp. Hence, the stce1 gene was transferred into Humicola insolens and expressed. As a result, extremely high levels (0.90 mg protein per ml of culture supernatant, 27% of the total proteins) of the recombinant STCE1 were secreted as a mature form in the culture supernatant.  相似文献   

3.
EGL3 and RCE1 are glycoside hydrolase family 45 endoglucanases isolated from Humicola grisea and Rhizopus oryzae respectively. The amino acid sequences of the two endoglucanases are homologous; on the other hand, the optimum temperature of EGL3 is higher than that of RCE1. In this study, four chimeric endoglucanases, named ER1, ER2, ER3 and ER4, in which one of four sequential amino acid regions of the EGL3 catalytic domain (CAD) was replaced by the corresponding RCE1 amino acids, were constructed to explore the region responsible for the EGL3 temperature profile. Then their temperature profiles were compared with that of the recombinant EGL3. Replacement of the N-terminal region of EGL3 with that of RCE1 caused the EGL3 temperature profile to shift to a lower temperature. These results suggest that the N-terminal amino acids of the EGL3 are responsible for the EGL3 temperature profile.  相似文献   

4.
A new endoglucanase, designated BCE1, produced by Beltraniella portoricensis, was purified from the culture supernatant. The N-terminal amino acid sequence suggests that BCE1 belongs to family 45 glycoside hydrolase (family 45 endoglucanase). The molecular mass of BCE1 was found to be 40 kDa by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH for the carboxymethyl cellulase (CMCase) activity of BCE1 was 4.5, and the optimum temperature was 55 degrees C. Among family 45 endoglucanases, RCE1 and RCE2 from Rhizopus oryzae, PCE1 from Phycomyces nitens, and EGL3 and EGL4 from Humicola grisea, BCE1 was most resistant to anionic surfactant and oxidizing agent. These results indicate that BCE1 might prove to be a useful enzyme in the detergent industry.  相似文献   

5.
We examined the characteristics of family 45 endoglucanases (glycoside hydrolases family 45; GH45) from Mucorales belonging to Zygomycota in the use of textiles and laundry. The defibrillation activities on lyocell fabric of family 45 endoglucanases from Mucorales, such as RCE1 and RCE2 from Rhizopus oryzae, MCE1 and MCE2 from Mucor circinelloides, and PCE1 from Phycomyces nitens, were much higher than those of the other family 45 endoglucanases. By contrast, family 45 endoglucanases from Mucorales were less resistant to anionic surfactant and oxidizing agent, main components in detergents, than the other family 45 endoglucanases. RCE1 consists of two distinct modules, a catalytic module and a carbohydrate-binding module family 1 (CBM1), and these common specific characteristics were considered to due to the catalytic module, but not to the CBM1.  相似文献   

6.
《Journal of biotechnology》1999,67(2-3):85-97
We have cloned two endoglucanase genes (egl3 and egl4) from a thermophilic fungus, Humicola grisea. The coding region of the egl3 gene was interrupted by an intron of 56-bp, and the deduced amino acid sequence of the egl3 gene was 305 amino acids in length and showed 98.4% identity with Humicola insolens EGV. The coding region of the egl4 gene was also interrupted by an intron of 173-bp, which contains 34 TTC repeated sequence units, and the deduced amino acid sequence of the egl4 gene was 227 amino acids in length and showed 61.5% identity with H. grisea EGL3. The typical hinge and the cellulose-binding domain were observed in the C-terminal region of EGL3, but they were not observed in EGL4. In the 5′ upstream region of both genes, there were a TATA box or its similar sequence, CAAT motifs, and 6-bp sites which are identical or similar to the consensus sequence for binding a catabolite repressor CREA in Aspergillus nidulans. The egl3 and the egl4 genes were expressed in Aspergillus oryzae, and the translation products were purified. The fusion protein, EGL4CBD, which consists of a catalytic domain of EGL4 and the C-terminal region of EGL3, was also constructed and produced by A. oryzae, and purified. These enzymes showed relatively high activity toward carboxymethyl cellulose (CMC) and could not hydrolyze p-nitrophenyl-β-d-glucoside and p-nitrophenyl-β-d-cellobioside. The positive effect of substituting the C-terminal region of EGL4 with that of EGL3 was observed in the hydrolysis of CMC.  相似文献   

7.
The DNA sequence for the xylanase gene fromPrevotella (Bacteroides) ruminicola 23 was determined. The xylanase gene encoded for a protein with a molecular weight of 65,740. An apparent leader sequence of 22 amino acids was observed. The promoter region for expression of the xylanase gene inBacteroides species was identified with a promoterless chloramphenicol acetyltransferase gene. A region of high amino acid homology was found with the proposed catalytic domain of endoglucanases from several organisms, includingButyrivibrio fibrisolvens, Ruminococcus flavefaciens, andClostridium thermocellum. The cloned xylanase was found to exhibit endoglucanase activity against carboxymethyl cellulose. Analysis of the codon usage for the xylanase gene found a bias towards G and C in the third position in 16 of 18 amino acids with degenerate codons.  相似文献   

8.
An endoglucanase gene, engB, from Clostridium cellulovorans, previously cloned into pUC19, has been further characterized and its product investigated. The enzyme, EngB, encoded by the gene was secreted into the periplasmic space of Escherichia coli. The enzyme was active against carboxymethylcellulose, xylan and lichenan but not Avicel (crystalline cellulose). The sequenced gene showed an open reading frame of 1323 base pairs and coded for a protein with a molecular mass of 48.6 kDa. The mRNA contained a typical Gram-positive ribosome-binding site sequence GGAGG and a sequence coding for a putative signal peptide. There is high amino acid and base sequence homology between the N-terminal regions of EngB and another C. cellulovorans endoglucanase, EngD, but they differ significantly in their C-termini. Deletion analyses revealed that up to 32 amino acids of the N-terminus and 52 amino acids of the C-terminus were not required for catalytic activity. The conserved reiterated domains at the C-terminus of EngB were similar to those from endoglucanases from other cellulytic bacteria. According to our deletion analyses, this region is not needed for catalytic activity.  相似文献   

9.
Sequence analysis of the endoglucanase EGCCA of Clostridium cellulolyticum indicates the existence of two domains: a catalytic domain extending from residue 1 to residue 376 and a reiterated domain running from residue 390 to 450. A small deletion in the C terminal end of the catalytic domain inactivated the protein. From the analysis of the sequences of 26 endoglucanases belonging to family A, we focused on seven amino acids which were totally conserved in all the catalytic domains compared. The roles of two of these, Arg-79 and His-122, were studied and defined on the basis of the mutants obtained by introducing various substitutions. Our findings suggest that Arg-79 is involved in the structural organization of the protein; the His-122 residue seems to be more essential for catalysis. The role of His-123, which is conserved only in subfamily A4, was also investigated.  相似文献   

10.
Summary The nucleotide sequence of the celZ gene coding for a thermostable endo--1,4-glucanase (Avicelase I) of Clostridium stercorarium was determined. The structural gene consists of an open reading frame of 2958 by which encodes a preprotein of 986 amino acids with an Mr of 109000. The signal peptide cleavage site was identified by comparison with the N-terminal amino acid sequence of Avicelase I purified from C. stercorarium culture supernatants. The recombinant protein expressed in Escherichia coli is proteolytically cleaved into catalytic and cellulose-binding fragments of about 50 kDa each. Sequence comparison revealed that the N-terminal half of Avicelase I is closely related to avocado (Persea americana) cellulase. Homology is also observed with Clostridium thermocellum endoglucanase D and Pseudomonas fuorescens cellulase. The cellulose-binding region was located in the C-terminal half of Avicelase I. It consists of a reiterated domain of 88 amino acids flanked by a repeated sequence about 140 amino acids in length. The C-terminal flanking sequence is highly homologous to the non-catalytic domain of Bacillus subtilis endoglucanase and Caldocellum saccharolyticum endoglucanase B. It is proposed that the enhanced cellulolytic activity of Avicelase I is due to the presence of multiple cellulose-binding sites.  相似文献   

11.
Pectobacterium chrysanthemi PY35 secretes the endoglucanase Cel5Z, an enzyme of the glycoside hydrolase family 5. Cel5Z is a 426 amino acid, signal peptide (SP)-containing protein composed of two domains: a large N-terminal catalytic domain (CD; 291 amino acids) and a small C-terminal cellulose binding domain (CBD; 62 amino acids). These two domains are separated by a 30 amino acid linker region (LR). A truncated cel5Z gene was constructed with the addition of a nonsense mutation that removes the C-terminal region of the protein. A truncated Cel5Z protein, consisting of 280 amino acid residues, functioned as a mature enzyme despite the absence of the SP, 11 amino acid CD, LR, and CBD region. In fact, this truncated Cel5Z protein showed an enzymatic activity 80% higher than that of full-length Cel5Z. However, cellulase activity was undetectable in mature Cel5Z proteins truncated to less than 280 amino acids.  相似文献   

12.
From the culture filtrate of Trichoderma reesei we have isolated a novel endoglucanase (38 kDa) which was shown to be identical to endoglucanase III (E III, 50 kDa), but lacking the first 61 N-terminal amino acids. This core protein, designated E III core, is fully active against soluble substrates, such as carboxymethylcellulose, whereas both activity against and adsorption to microcrystalline cellulose (Avicel) is markedly decreased. Sedimentation velocity experiments revealed that the intact E III enzyme has much higher asymmetry than the E III core protein, suggesting that the N-terminal region split off constitutes a protruding part of the native enzyme. These results lead to the proposal that native E III consists of two functionally separated domains: a catalytically active core and a protruding N-terminal domain which acts in the binding to insoluble cellulose. The N-terminal peptide missing in E III core corresponds to the heavily glycosylated common structural element found also in the N-terminus of cellobiohydrolase II and in the C-termini of cellobiohydrolase I and endoglucanase I. A similar bifunctional organization could thus be the rule for Trichoderma cellulases, endoglucanases as well as cellobiohydrolases.  相似文献   

13.
We previously cloned three endoglucanase genes, rce1, rce2, and rce3, from Rhizopus oryzae as the first cellulase genes from the subdivision Zygomycota. In this study, an endoglucanase gene, designated a pce1 gene, was cloned by plaque hybridization with the codon usage-optimized rce1 gene as a probe from Phycomyces nitens, a member of the subdivision Zygomycota. The pec1 gene had an open reading frame of 1,038 nucleotides encoding an endoglucanase (PCE1) of 346 amino acid residues. The amino acid sequence deduced from the pce1 gene consisted of a cellulose-binding domain (CBD) at the N terminus and of a catalytic domain belonging to family 45 glycoside hydrolase at the C terminus. PCE1 was purified to apparent homogeneity from the culture supernatant of P. nitens and the molecular mass was found to be 45 kDa. The optimum pH for the CMCase activity of PCE1 was 6.0, and the optimum temperature was 50 degrees C, the lowest among the family 45 endoglucanases.  相似文献   

14.
The complete nucleotide sequence of the Clostridium thermocellum celE gene, coding for an endo-beta-1,4-glucanase (endoglucanase E; EGE) with xylan-hydrolysing activity has been determined. The structural gene consists of an open reading frame (ORF) of 2442 bp commencing with a GTG start codon and followed by a TAA stop codon. The nucleotide sequence obtained has been confirmed by comparing the predicted amino acid sequence with that derived by N-terminal amino acid sequencing of the purified protein. The EGE sequence contains a region homologous to the reiterated domain found at the C terminus of other endoglucanases from the same organism. BAL 31 deletions of the structural gene have revealed the extent to which this conserved sequence is necessary for endoglucanase and xylanase activity. A region of DNA, upstream from the structural gene has also been sequenced and a ribosome-binding site and putative promoter sequences have been identified. A second ORF which ends 349 bp 5' to the GTG start codon of the celE gene has also been identified. The encoded product contains a C terminus homologous to other C. thermocellum endoglucanases.  相似文献   

15.
Abstract The endoglucanase gene ( endB ) of Fibrobacter succinogenes S85 encodes a protein of 555 amino acids (EGB) with a M r of 62500. EGB shows homology with cellulases belonging to family E. Residues involved in the catalytic activity of CelD from Clostridium thermocellum are also found in EGB. Structure predictions suggest that EGB, like CelD, comprises a large α-helical catalytic domain plus a β-strand domain of unknown function located in the N-terminal part of the protein. Construction of a phylogenetic tree of family E catalytic domains revealed that EGB is closest to a cellodextrinase from Butryrivibrio fibrisolvens .  相似文献   

16.
By the use of a T7 expression system, endoglucanases-xylanases EngB and EngD from Clostridium cellulovorans were hyperexpressed and purified from Escherichia coli. The two enzymes demonstrated both endoglucanase and xylanase activities. The substrate specificities of both endoglucanases were similar except that EngD had four-times-greater p-nitrophenyl beta-1,4-cellobiosidase activity. The two proteins were very homologous (80%) up to the Pro-Thr-Thr region which divided the protein into -NH2- and -COOH-terminals. The -COOH- region of EngB has high homology to the endoglucanases and a xylanase from Clostridium thermocellum and to an endoglucanase from Clostridium cellulolyticum and did not show strong binding to cellulose (Avicel). However, the -COOH- region of EngD, which had homology to the cellulose-binding domains of Cellulomonas fimi exo- and endoglucanases and to Pseudomonas fluorescens endoglucanase, demonstrated binding ability to cellulose even when the domain was fused to the N-terminal domain of EngB. By probing the Avicel-purified cellulase complex (F8) with anti-EngB and anti-EngD antibodies, both EngB and EngD were shown to be present on the cellulase complex of C. cellulovorans. Many proteins homologous to EngB and EngD were also present on the complex.  相似文献   

17.
18.
Three endoglucanase genes (cel5A, cel5B, and cel61A) were cloned from an industrial fungus, Aspergillus kawachii. Yeasts transformed with these cDNAs showed endoglucanase activity in medium. Cel5A and Cel61A contained a type 1 cellulose-binding domain (CBD1) at the C-terminus of the enzyme. The putative catalytic regions of Cel5A and Cel5B showed homology with various endoglucanases belonging glycosyl hydrolase family 5 (GH5). Cel5B showed high homology with Cel5A in catalytic region, but it lacked CBD1 and linker. The cel5A contained four introns, whereas cel5B contained five introns. The putative catalytic region of Cel61A showed homology with enzymes belonging to GH61. The cel61A contained no introns.  相似文献   

19.
The nucleotide sequence of the cellulase gene celC, encoding endoglucanase C of Clostridium thermocellum, has been determined. The coding region of 1032 bp was identified by comparison with the N-terminal amino acid (aa) sequence of endoglucanase C purified from Escherichia coli. The ATG start codon is preceded by an AGGAGG sequence typical of ribosome-binding sites in Gram-positive bacteria. The derived amino acid sequence corresponds to a protein of Mr 40,439. Amino acid analysis and apparent Mr of endoglucanase C are consistent with the amino acid sequence as derived from the DNA sequencing data. A proposed N-terminal 21-aa residue leader (signal) sequence differs from other prokaryotic signal peptides and is non-functional in E. coli. Most of the protein bears no resemblance to the endoglucanases A, B, and D of the same organism. However, a short region of homology between endoglucanases A and C was identified, which is similar to the established active sites of lysozymes and to related sequences of fungal cellulases.  相似文献   

20.
Aims: Penicillium echinulatum is effective for bioconversion processes. However, nothing is known about the molecular biology of its cellulolytic system. We describe for the first time the isolation, cloning and expression of a P. echinulatum cellulase cDNA (Pe‐egl1) encoding a putative endoglucanase. Methods and Results: Pe‐egl1 cDNA was identified from random sequencing of a P. echinulatum cDNA library. The deduced EGL1 protein possibly belongs to the glycosyl hydrolase family 5A, with 387 amino acid residues and strong similarity with other fungal endoglucanases. The cDNA was heterologously expressed in Pichia pastoris. The recombinant EGL1 secreted by a Pic. pastoris recombinant strain revealed the characteristics of particular interest: an optimal activity over a broad pH range (5·0–9·0), and an optimal temperature of 60°C. The recombinant EGL1 also showed high thermostability (84% of residual activity after 1 h of pre‐incubation at 70°C). Calcium exerted a strong stimulatory effect over EGL1 activity. Conclusions: Altogether, these results point to the potential application of this P. echinulatum endoglucanase in cellulose processing industries, particularly the textile one because of its biochemical properties. Significance and Impact of the Study: The characterization and heterologous expression of the first Pechinulatun cDNA inaugurates the exploitation of this potential industrial micro‐organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号