首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have reported that propolis suppresses tumor-induced angiogenesis in vivo and in vitro, but antiangiogenic mechanism of propolis at cellular level remains unclear. In this study, we observed that propolis not only inhibited tube formation but also induced apoptosis of endothelial cells. These results suggest that propolis exerts its antiangiogenic effects at least in part through induction of apoptosis.  相似文献   

2.
Benzo[a]pyrene (BaP) and N-nitrosodimethylamine (NDMA) are carcinogens and indirect acting mutagens. A naturally occurring dietary indole, indole-3-carbinol (I-3-C), has been shown to decrease the incidence of aryl hydrocarbon induced neoplasia in experimental animals. We examined the relationship between the ability of I-3-C to alter the rate of carcinogen oxidation and its ability to decrease the rate of covalent binding of carcinogen metabolites to DNA and protein. We found that I-3-C inhibited the covalent binding of NDMA oxidation products to DNA in vitro in proportion to its ability to inhibit carcinogen metabolism. Pretreatment of mice by gavage with I-3-C resulted in no change in the rate of aryl hydrocarbon hydroxylase or NDMA demethylase in hepatic post-mitochondrial supernatant. However, this pretreatment resulted in a 60-90% decrease in the ability of carcinogen oxidative metabolites to bind covalently to DNA or protein in vitro. Similarly, in in vivo experiments, gavage with I-3-C, followed by gavage with BaP or NDMA, resulted in a 63-85% decrease in covalent binding to macromolecules, with no concomitant change in carcinogen metabolism. The results suggest that the in vivo administration of I-3-C may confer protection for hepatic macromolecules against covalent binding of the metabolites of these two indirect acting mutagens.  相似文献   

3.
Indole-3-carbinol (I3C) is a promising anticancer dietary compound, which inhibits breast cancer in animal models. The objective of the current study was to characterize I3C-induced cell death in a panel of human breast tumorigenic cells (MCF7, MDA-MB-468, MDA-MB-231 and HBL100) in comparison with normal fibroblasts. Since epithelial cells are protected from cell death by a three-dimensional environment, 3D cell culture (collagen I gel and spheroids) was employed to investigate susceptibility to I3C. Cell viability in the presence of 256 μM I3C, a concentration close to the physiologically achievable range, was in the order fibroblasts = HBL100>MDA-MB-231>MCF7>MDA-MB-468 in monolayer culture. However, 3D culture conditions increased the susceptibility of MCF7 and MDA-MB-468 cancer cells towards I3C. I3C induced cell death in breast cancer MCF7, MDA-MB-468 and MDA-MB–231 cells via the mitochondrial apoptotic pathway. I3C significantly reduced levels of epidermal growth factor receptor (EGFR) in MDA-MB-468 after 6 h and in MDA-MB-231 and HBL100 cells after 30 h. Downregulation of EGFR in MDA-MB468 and MDA-MB-231 cells using an EGFR inhibitor resulted in apoptosis. EGFR modulation using EGF or an EGFR inhibitor markedly influenced viability and response to I3C in MDA-MB-468 cells in 3D conditions. EGFR expression was modulated by 3D conditions. Therefore, I3C-induced EGFR reduction in these cells is likely to be responsible for I3C-induced apoptosis.  相似文献   

4.
Objectives: The role of aryl hydrocarbon receptor (AhR) in carcinogenesis has been studied recently. Indole-3-carbinol (I3C) is an AhR agonist and a potential anticancer agent. Here, we investigated the effects of I3C on cell cycle progression and apoptosis through activation of AhR on THP-1 acute myeloid leukemia (AML) cell line.

Methods: MTT viability assay was used to measure the cytotoxic effects of I3C on THP-1 cells. Apoptosis and cell cycle assays were investigated using flow cytometry. Real time RT-PCR was conducted to measure the alterations in the expression of AhR gene, key genes associated with AhR activation (IL1β and CYP1A1) and major genes involved in cell cycle regulation and apoptosis including P27, P21, CDK2, P53, BCL2 and FasR.

Results: Our findings revealed that I3C inhibits the proliferation of THP-1 cells in a dose- and time-dependent manner with minimal toxicity over normal monocytes. The AhR target genes (CYP1A1, IL1β) were overexpressed upon I3C treatment (p?p?p?p?p?p?p?p?Conclusions: I3C could exert its antileukemic effects through AhR activation which is associated with programed cell death and G1 cell cycle arrest in a dose- and time-dependent manner. Therefore, AhR could be targeted as a novel treatment possibility in AML.  相似文献   

5.
软骨血管生成抑制因子抑制血管生成的研究   总被引:13,自引:1,他引:13  
小牛气管软骨经盐酸胍抽提,丙酮分级沉淀,膜超滤,柱层析等步骤得到软骨血管生成抑制因子(cartilage angiogenesis inhibiting factor,CAIF).SDS-聚丙烯酰胺凝胶电泳显示CAIF由单一组分组成,分子量为27700.通过[ 3H]-TdR掺入,活细胞检测等方法测定CAIF对内皮细胞、Hela细胞、QGY7703细胞与小鼠骨髓细胞、人皮肤成纤维细胞等的DNA合成的影响,以及细胞毒作用.采用鸡胚绒毛尿囊膜实验测定CAIF对血管生成的抑制效应.结果显示:CAIF对内皮细胞产生强的抑制作用,对Hela细胞抑制很弱,对QGY7703细胞、小鼠骨髓细胞、人皮肤成纤维细胞均无抑制作用;对鸡胚绒毛尿囊膜的血管生成产生明显的抑制作用.提示CAIF能较特异地抑制血管生成,CAIF达到电泳纯,是专一性较强的血管生成抑制因子.  相似文献   

6.
Angiogenesis is a vital process for normal tissue development and wound healing, but is also associated with a variety of pathological conditions. Using this protocol, angiogenesis may be measured in vitro in a fast, quantifiable manner. Primary or immortalized endothelial cells are mixed with conditioned media and plated on basement membrane matrix. The endothelial cells form capillary like structures in response to angiogenic signals found in conditioned media. The tube formation occurs quickly with endothelial cells beginning to align themselves within 1 hr and lumen-containing tubules beginning to appear within 2 hr. Tubes can be visualized using a phase contrast inverted microscope, or the cells can be treated with calcein AM prior to the assay and tubes visualized through fluorescence or confocal microscopy. The number of branch sites/nodes, loops/meshes, or number or length of tubes formed can be easily quantified as a measure of in vitro angiogenesis. In summary, this assay can be used to identify genes and pathways that are involved in the promotion or inhibition of angiogenesis in a rapid, reproducible, and quantitative manner.  相似文献   

7.
8.
Cervical cancer (CC) is one of the most common cancers in women, and is linked to human papillomavirus (HPV) infection. The virus oncoprotein E6 binds to p53, resulting in its degradation and allowing uncontrolled cell proliferation. Meanwhile, the HPV E7 protein maintains host cell differentiation by targeting retinoblastoma tumor suppressor. The host cell can ubiquitinate E6 and E7 through UBE2L3, whose expression depends on the interaction between the aryl hydrocarbon receptor (AhR) with Xenobiotic Responsive Elements (XREs) located in the UBE2L3 gene promoter. In this study, we used cell culture to determine the effect of indole-3-carbinol (I3C) over cellular viability, apoptosis, cell proliferation, and mRNA levels of UBE2L3 and CYP1A1. In addition, patients’ samples were used to determine the mRNA levels of UBE2L3 and CYP1A1 genes. We found that I3C promotes the activation of AhR and decreases cell proliferation, possibly through UBE2L3 mRNA induction, which would result in the ubiquitination of HPV E7. Since there is a strong requirement for selective and cost-effective cancer treatments, natural AhR ligands such as I3C could represent a novel strategy for cancer treatment.  相似文献   

9.
We examined the possibility that I3C, when combined with a differentiation stimulus (TPA+CaCl(2)), would sensitise SCC cells to a differentiation stimulus. We report that I3C induces a profound growth inhibition in SCC cells that is dissimilar to the growth inhibition required to initiate differentiation. Moreover, we report that I3C, when combined with TPA+CaCl(2) treatment, induces a loss of colony forming ability that was differentiation and senescence - independent but was due to delayed cytotoxicity. This study shows that I3C in combination with a PKC activator+Ca(2+) may be a useful therapeutic strategy for treating oral SCC.  相似文献   

10.
Angiogenesis involves proliferation of capillary endothelial cells and formation of lumen-containing tube-like structures. A recently established murine brain capillary endothelial cell line, IBE, can either proliferate or form tube-like structures (i.e., differentiate) in response to fibroblast growth factor-2 (FGF-2), dependent on the culture conditions. The 4N1K peptide (KRFYVVMWKK), which is derived from the C-terminal cell-binding domain of thrombospondin-1 (TSP-1), inhibited tube formation, but not proliferation of IBE cells. Polyclonal antibodies against 4N1K blocked TSP-1-induced inhibition of tube formation by IBE cells. 4N1K inhibited tyrosine phosphorylation of focal adhesion kinase and FGF-2-stimulated tyrosine phosphorylation of phospholipase C-gamma in tube-forming, but not proliferating, IBE cells. The peptide also inhibited FGF-2-induced neovascularization in mouse cornea. Our results indicate that TSP-1 may exert its inhibitory effects on angiogenesis via the C-terminal cell-binding domain containing the 4N1K sequence by inhibiting tube formation by endothelial cells.  相似文献   

11.
RTN3是RTN家族的成员之一,因其主要定位于内质网,所以用reticulon来命名.RTN3与RTN4B是RTN家族中目前已知的、唯一一对具有凋亡诱发功能的基因.过表达的RTN3介导了真核细胞的三大凋亡信号转导通路:死亡受体途径、线粒体途径、内质网途径,并使之交联形成凋亡调控网络;RTN3可与RTN4B相互作用,形成同源或异源二聚来调控细胞凋亡.另外,过表达RTN3还参与了细菌的类凋亡作用.RTN3广泛表达于多种组织,其过表达诱发凋亡的机制的总结将让人们更好的了解RTN3及其家族,完善细胞凋亡的信号转导研究.  相似文献   

12.
During oxidation of indole-3-acetic acid catalyzed by horseradish peroxidase, indole-3-aldehyde and 3-hydroxymethayloxindole cease to be produced a few minutes after initiation of the reaction even though IAA is still being consumed. At the same time an increased accumulation of indole-3-methanol is observed and the ratio of oxygen to indole-3-acetic acid consumed becomes less than unity. Indole-3-niethanol can be a substrate for horseradish peroxidase provided that H2O2 is present. In this reaction, indole-3-aldehyde but not 3-hydroxymethyloxindole is formed. H2O2 is not merely an activating agent for the enzyme but also a true oxidant because it is consumed stoichiometrically (1 mol of H2O2 per mol of indole-3-methanol) and the reaction is independent of the presence of oxygen. Indole-3-methanol is proposed as an intermediate in the process of oxidation of indole-3-acetic acid into indole-3-al-denyde, the second step of which requires peroxide as an oxidant.  相似文献   

13.
沙利度胺是一种抗血管生成药物,临床上用于治疗多种肿瘤,但其抗肿瘤血管生成机制尚不十分清楚. 本文采用MTT法观察沙利度胺对体外培养的血管内皮细胞增殖的影响. 结果发现,沙利度胺能够抑制血管内皮细胞的增殖,其IC50为16.47 μg/mL;然后采用Hoechst染色和流式细胞仪检测细胞凋亡和细胞周期,发现沙利度胺能够诱导内皮细胞凋亡,并干扰细胞的周期,出现G0/G1期阻滞. 最后,通过Western印迹方法分析沙利度胺对血管内皮细胞Bcl-2蛋白表达的影响,发现抗凋亡的Bcl-2蛋白表达水平随沙利度胺浓度增大而降低. 初步结果提示,沙利度胺可能通过阻遏抗凋亡分子Bcl-2表达,激活诱导G1期阻滞的信号通路而抑制内皮细胞新生,从而抑制肿瘤生长. 诱导内皮细胞凋亡及G1期阻滞的具体分子机制正在研究中.  相似文献   

14.
The peroxidation of liposomes by a haem peroxidase and hydrogen peroxide in the presence of indole-3-acetic acid and derivatives was investigated. It was found that these compounds can accelerate the lipid peroxidation up to 65 fold and this is attributed to the formation of peroxyl radicals that may react with the lipids, possibly by hydrogen abstraction. The peroxyl radicals are formed by peroxidase-catalyzed oxidation of the enhancers to radical cations which undergo cleavage of the carbon-carbon bond on the side-chain to yield CO2 and carbon-centred radicals that rapidly add oxygen. In competition with decarboxylation, the radical cations deprotonate reversibly from the Nl position. Rates of decarboxylation,pKa values and rate of reaction with the peroxidase compound I indicate consistent substituent effects which, however, can not be quantitatively related to the usual Hammett or Brown parameters. Assuming that the rate of decarboxylation of the radical cations taken is a measure of the electron density of the molecule (or radical), it is found that the efficiency of these compounds as enhancers of lipid peroxidation increases with increasing electron density, suggesting that, at least in the model system, the oxidation of the substrates is the limiting step in causing lipid peroxidation.  相似文献   

15.
16.
《Free radical research》2013,47(5):403-418
The peroxidation of liposomes by a haem peroxidase and hydrogen peroxide in the presence of indole-3-acetic acid and derivatives was investigated. It was found that these compounds can accelerate the lipid peroxidation up to 65 fold and this is attributed to the formation of peroxyl radicals that may react with the lipids, possibly by hydrogen abstraction. The peroxyl radicals are formed by peroxidase-catalyzed oxidation of the enhancers to radical cations which undergo cleavage of the carbon-carbon bond on the side-chain to yield CO2 and carbon-centred radicals that rapidly add oxygen. In competition with decarboxylation, the radical cations deprotonate reversibly from the Nl position. Rates of decarboxylation,pKa values and rate of reaction with the peroxidase compound I indicate consistent substituent effects which, however, can not be quantitatively related to the usual Hammett or Brown parameters. Assuming that the rate of decarboxylation of the radical cations taken is a measure of the electron density of the molecule (or radical), it is found that the efficiency of these compounds as enhancers of lipid peroxidation increases with increasing electron density, suggesting that, at least in the model system, the oxidation of the substrates is the limiting step in causing lipid peroxidation.  相似文献   

17.
J Chen  DL Kwong  CL Zhu  LL Chen  SS Dong  LY Zhang  J Tian  CB Qi  TT Cao  AM Wong  KL Kong  Y Li  M Liu  L Fu  XY Guan 《PloS one》2012,7(9):e44636
Deletion of the short arm of chromosome 3 is one of the most frequent genetic alterations in many solid tumors including nasopharyngeal carcinoma (NPC), suggesting the existence of one or more tumor suppressor genes (TSGs) within the frequently deleted region. A putative TSG RBMS3 (RNA binding motif, single stranded interacting protein 3), located at 3p24-p23, has been identified in our previous study. Here, we reported that downregulation of RBMS3 was detected in 3/3 NPC cell lines and 13/15 (86.7%) primary NPC tissues. Functional studies using both overexpression and suppression systems demonstrated that RBMS3 has a strong tumor suppressive role in NPC. The tumor suppressive mechanism of RBMS3 was associated with its role in cell cycle arrest at the G1/S checkpoint by upregulating p53 and p21, downregulating cyclin E and CDK2, and the subsequent inhibition of Rb-ser780. Further analysis demonstrated that RBMS3 had a pro-apoptotic role in a mitochondrial-dependent manner via activation of caspase-9 and PARP. Finally, RBMS3 inhibited microvessel formation, which may be mediated by down-regulation of MMP2 and β-catenin and inactivation of its downstream targets, including cyclin-D1, c-Myc, MMP7, and MMP9. Taken together, our findings define a function for RBMS3 as an important tumor suppressor gene in NPC.  相似文献   

18.
lndole-3-methylglucosinolate biosynthesis and metabolism in roots of Brassica napus (swede, cv. Danestone II) infected with Plasmodiophora brassicae Wor. were investigated with a pulse feeding technique developed to infiltrate intact tissue segments with labelled substrates. Infected root tissue metabolized [14C]-L-tryptophan to indole-3-methylglucosinolate, indole-3-acetonitrile, and some other lipophilic indole compounds. The incorporation of radioactivity into these compounds was significantly enhanced in infected tissue compared with control tissue. A time course study showed a high turnover of indole-3-methylglucosinolate and indole-3-acetonitrile in infected tissue. However, thioglucoside glucohydrolase activity was not changed in infected tissue compared with control tissue. Disc electrophoresis revealed the same isoenzyme in both tissues. Control and infected tissues both rapidly hydrolyzed [14C]-indole-3-acetonitrile in vivo. The possibility of a disease specific biosynthesis of indole-3-acetic acid from indole-3-methylglucosinolate as the result of a changed compartmentation is discussed.  相似文献   

19.
Indole-3-acetic acid in microbial and microorganism-plant signaling   总被引:14,自引:0,他引:14  
Diverse bacterial species possess the ability to produce the auxin phytohormone indole-3-acetic acid (IAA). Different biosynthesis pathways have been identified and redundancy for IAA biosynthesis is widespread among plant-associated bacteria. Interactions between IAA-producing bacteria and plants lead to diverse outcomes on the plant side, varying from pathogenesis to phyto-stimulation. Reviewing the role of bacterial IAA in different microorganism-plant interactions highlights the fact that bacteria use this phytohormone to interact with plants as part of their colonization strategy, including phyto-stimulation and circumvention of basal plant defense mechanisms. Moreover, several recent reports indicate that IAA can also be a signaling molecule in bacteria and therefore can have a direct effect on bacterial physiology. This review discusses past and recent data, and emerging views on IAA, a well-known phytohormone, as a microbial metabolic and signaling molecule.  相似文献   

20.
Angiogenesis is stimulated by a tumor-derived endothelial cell growth factor   总被引:17,自引:0,他引:17  
A growth factor mitogenic for BALB/C 3T3 cells and capillary endothelial cells was isolated from a rat chondrosarcoma and purified to homogeneity. Purification was accomplished by a combination of BioRex 70 cation exchange chromatography and heparin affinity chromatography. The pure chondrosarcoma-derived growth factor (ChDGF) had a molecular weight of about 18,000. The angiogenesis activity of pure ChDGF was tested by measuring its ability to vascularize the chorioallantoic membrane (CAM) and yolk sac membrane of the developing chick. The ability of ChDGF to induce the growth of limbal vessels in the rat cornea was also measured. To quantitate the angiogenesis response, a unit system based on the growth factor activity of ChDGF for 3T3 cells was adopted. ChDGF was found to have a specific activity of about 5 units/ng when applied to 3T3 cells. About 300-600 units of ChDGF in the two types of developing chick membrane and 30-5 units of ChDGF in the rat cornea were found to stimulate noninflammatory angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号