首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of asymmetric production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 was examined by investigating the properties of the enzymes involved in the hydrolysis of dl-5-substituted hydantoins. The enzymatic production of d-amino acids from the corresponding hydantoins by Pseudomonas sp. AJ-11220 involved the following two successive reactions; the d-isomer specific hydrolysis, i.e., the ring opening of d-5-substituted hydantoins to d-form N-carbamyl amino acids by an enzyme, d-hydantoin hydrolase (d-HYD hydrolase), followed by the d-isomer specific hydrolysis, i.e., the cleavage of N-carbamyl-d-amino acids to d-amino acids by an enzyme, N-carbamyl-d-amino acid hydrolase (d-NCA hydrolase).

l-5-Substituted hydantoins not hydrolyzed by d-HYD hydrolase were converted to d-form 5- substituted hydantoins through spontaneous racemization under the enzymatic reaction conditions.

It was proposed that almost all of the dl-5-substituted hydantoins were stoichiometrically and directly converted to the corresponding d-amino acids through the successive reactions of d-HYD hydrolase and d-NCA hydrolase in parrallel with the spontaneous racemization of l-5-substituted hydantoins to those of dl-form.  相似文献   

2.
The reaction conditions for the production of l-tryptophan from dl-5-indolyl- methylhydantoin by Flavobacterium sp. AJ-3940, and the cultural conditions for the formation of the enzyme involved by this bacterium were investigated. The optimal pH of this reaction was around 8.5 and the optimal temperature was between 45 to 55°C. The amount of l-tryptophan produced was remarkably increased by the addition of inosine, which formed a water insoluble adduct with l-tryptophan, to the reaction mixture because of the release of end-product inhibition by l-tryptophan. This enzyme was inducibly and intracellularly produced by Flavobacterium sp. AJ-3940 in proportion to the increase in cell growth. Cells showing high activity were obtained using a medium containing 5 g glucose, 5 g (NH4)2SO4, 1 g KH2PO4, 3 g K2HPO4, 0.1 g MgSO4 · 7H2O, 0.01 g CaCl2 · 2H2O, 50 ml corn steep liquor and 3.5 g dl-5-indolylmethylhydantoin in a total volume of 1 liter (pH 7.0). Under the best conditions, 43 mg/ml of l-tryptophan was produced from 50 mg/ml of dl-5-indolylmethylhydantoin with a molar yield of 97% in the presence of cells of Flavobacterium sp. AJ-3940. In addition, other l-aromatic amino acids such as l-phenylalanine, l-tyrosine, l-DOPA and related l-amino acids were also produced from the corresponding 5-substituted hydantoins by this bacterium containing the l-tryptophan-producing enzyme induced by dl-5-indolylmethylhydantoin.  相似文献   

3.
An N-carbamyl-L-amino acid amidohydrolase was purified from cells of Escherichia coli in which the gene for N-carbamyl-L-amino acid amidohydrolase of Pseudomonas sp. strain NS671 was expressed. The purified enzyme was homogeneous by the criterion of SDS–polyacrvlamide gel electrophoresis. The results of gel filtration chromatography and SDS–polyacrylamide gel electrophoresis suggested that the enzyme was a dimeric protein with 45-kDa identical subunits. The enzyme required Mn2+ ion (above 1 mM) for the activity. The optimal pH and temperature were 7.5 and around 40°C, respectively, with N-carbamyl-L-methionine as the substrate. The enzyme activity was inhibited by ATP and was iost completely with p-chloromercuribenzoate (1 mM). The enzyme was strictly L-specific and showed a broad substrate specificity for N-carbamyl-L-α-amino acids.  相似文献   

4.
The hydantoin racemase gene of Pseudomonas sp. strain NS671 had been cloned and expressed in Escherichia coli. Hydantoin racemase was purified from the cell extract of the E. coli strain by phenyl-Sepharose, DEAE-Sephacel, and Sephadex G-200 chromatographies. The purified enzyme had an apparent molecular mass of 32 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. By gel filtration, a molecular mass of about 190 kDa was found, suggesting that the native enzyme is a hexamer. The optimal conditions for hydantoin racemase activity were pH 9.5 and a temperature of 45 degrees C. The enzyme activity was slightly stimulated by the addition of not only Mn2+ or Co2+ but also metal-chelating agents, indicating that the enzyme is not a metalloenzyme. On the other hand, Cu2+ and Zn2+ strongly inhibited the enzyme activity. Kinetic studies showed substrate inhibition, and the Vmax values for D- and L-5-(2-methylthioethyl)hydantoin were 35.2 and 79.0 mumol/min/mg of protein, respectively. The purified enzyme did not racemize 5-isopropylhydantoin, whereas the cells of E. coli expressing the enzyme are capable of racemizing it. After incubation of the purified enzyme with 5-isopropylhydantoin, the enzyme no longer showed 5-(2-methylthioethyl)hydantoin-racemizing activity. However, in the presence of 5-(2-methylthioethyl)hydantoin, the purified enzyme racemized 5-isopropylhydantoin completely, suggesting that 5-(2-methylthioethyl)hydantoin protects the enzyme from inactivation by 5-isopropylhydratoin. Thus, we examined the protective effect of various compounds and found that divalent-sulfur-containing compounds (R-S-R' and R-SH) have this protective effect.  相似文献   

5.
Microbial hydrolysis of the acetates of unsaturated cyclic terpene alcohols by Pseudomonas sp. NOF-5 isolated from soil was investigated. (±)-trans-Carveyl acetate ((±)-trans-3) was enantio-selectively hydrolyzed with NOF-5 strain to give ( – )-trans-carveol (( – )-trans-2 of 86.6% optical purity). However, the hydrolysis of (±)-cis-3 was less enantioselective, while (±)-piperitylacetate ((±)-6, a cis and trans mixture) was hydrolyzed to give the ( – )-trans- and ( – )-cis-piperitols (( – )- trans-5 and ( – )-cis-5) in a poor optical yield. In this case, other tert-alcohols, ( + )-trans- and ( – )- ds-2-p-menthen-1-ols ((±)-trans-7 and ( – )-cis-7), were also produced. Furthermore, microbial and enzymic allyl rearrangements of ( + )-trans-6 and ( – )-trans-verbenylacetate (( – )-trans-11) were studied. Biological treatment of (+)-trans-6 and ( – )-trans-11 with NOF-5 or its esterase gave (+)-trans- and (-)-cis-1 and ( + )-cis-3-pinen-2-ol (( + )-cis-12), respectively.  相似文献   

6.
Pseudomonas sp. strain NS671, which produces L-amino acids asymmetrically from the corresponding racemic 5-substituted hydantoins, harbored a plasmid of 172 kb. Curing experiments suggest that this plasmid, designated pHN671, is responsible for the conversion of 5-substituted hydantoins to their corresponding L-amino acids by strain NS671. DNA fragments containing the genes involved in this conversion were cloned from pHN671 in Escherichia coli by using pUC18 as a cloning vector. The smallest recombinant plasmid, designated pHPB12, contained a 7.5-kb insert DNA. The nucleotide sequence of the insert DNA was determined, and three closely spaced open reading frames predicted to encode peptides with molecular masses of 75.6, 64.9, and 45.7 kDa were found. These open reading frames were designated hyuA, hyuB, and hyuC, respectively. Cell extracts from E. coli carrying deletion derivatives of pHPB12 were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the gene products of hyuA, hyuB, and hyuC were identified. The functions of these gene products were also examined with the deletion derivatives. The results indicate that both hyuA and hyuB are involved in the conversions of D- and L-5-substituted hydantoins to corresponding N-carbamyl-D- and N-carbamyl-L-amino acids, respectively, and that hyuC is involved in the conversion of N-carbamyl-L-amino acids to L-amino acids.  相似文献   

7.
A bacterial strain, which based on the sequences of its 16S rRNA, gyrB, catA, and qsdA genes, was identified as a Rhodococcus sp. closely related to Rhodococcus erythropolis, was isolated from soil by enrichment on the Pseudomonas quinolone signal [PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone], a quorum sensing signal employed by the opportunistic pathogen Pseudomonas aeruginosa. The isolate, termed Rhodococcus sp. strain BG43, cometabolically degraded PQS and its biosynthetic precursor 2-heptyl-4(1H)-quinolone (HHQ) to anthranilic acid. HHQ degradation was accompanied by transient formation of PQS, and HHQ hydroxylation by cell extracts required NADH, indicating that strain BG43 has a HHQ monooxygenase isofunctional to the biosynthetic enzyme PqsH of P. aeruginosa. The enzymes catalyzing HHQ hydroxylation and PQS degradation were inducible by PQS, suggesting a specific pathway. Remarkably, Rhodococcus sp. BG43 is also capable of transforming 2-heptyl-4-hydroxyquinoline-N-oxide to PQS. It thus converts an antibacterial secondary metabolite of P. aeruginosa to a quorum sensing signal molecule.  相似文献   

8.
DNA fragments containing the genes involved in the conversion of 5-substituted hydantoins to their corresponding L-amino acids have been cloned from the 172-kb native plasmid (pHN671) of Pseudomonas sp. strain NS671. The largest recombinant plasmid, designated pHPB14, encoded the ability to convert D-5-substituted hydantoins to the corresponding L-amino acids, whereas the smallest one, designated pHPB12, encoded the ability to convert them to their corresponding N-carbamyl-D-amino acids. Restriction analysis suggested that the inserts of both recombinant plasmids are derived from the identical portion in pHN671 and that the insert of pHPB14, compared with that of pHPB12, has an extra 5.3 kb in length. DNA sequencing revealed that pHPB14 contains two additional complete open reading frames, designated ORF5 and hyuE. Analysis of deletion derivatives of pHPB14 indicated that hyuE is required for the ability to produce L-amino acids from the corresponding D-5-substituted hydantoins, but ORF5 is not. Cells of Escherichia coli transformed with a plasmid containing hyuE were capable of racemizing different 5-substituted hydantoins, indicating that hyuE is a gene encoding a hydantoin racemase.  相似文献   

9.
Naphthalene and two naphthalenesulfonic acids were degraded by Pseudomonas sp. A3 and Pseudomonas sp. C22 by the same enzymes. Gentisate is a major metabolite. Catabolic activities for naphthalene, 1-naphthalenesulfonic acid, and 2-naphthalenesulfonic acid are induced by growth with naphthalene, 1-naphthalenesulfonic acid, 2-naphthalenesulfonic acid, methylnaphthalene, or salicylate. Gentisate is also an inducer in strain A3. Inhibition kinetics show that naphthalene and substituted naphthalenes are hydroxylated by the same naphthalene dioxygenase. Substrates with nondissociable substituents such as CH3, OCH3, Cl, or NO2 are hydroxylated in the 7,8-position, and 4-substituted salicylates are accumulated. If CO2H, CH2CO2H, or SO3H are substituents, hydroxylation occurs with high regioselectivity in the 1,2-position. Thus, 1,2-dihydroxy-1,2-dihydronaphthalene-2-carboxylic acids are formed quantitatively from the corresponding naphthalenecarboxylic acids. Utilization of naphthalenesulfonic acids proceeds by the same regioselective 1,2-dioxygenation which labilizes the C—SO3 bond and eliminates sulfite.  相似文献   

10.
Microbial transformation of quinoline by a Pseudomonas sp.   总被引:2,自引:5,他引:2       下载免费PDF全文
A Pseudomonas sp. isolated from sewage by enrichment culture on quinoline metabolized this substrate by a novel pathway involving 8-hydroxycoumarin. During early growth of the organism on quinoline, 2-hydroxyquinoline accumulated as the intermediate; 8-hydroxycoumarin accumulated as the major metabolite on further incubation. 2,8-Dihydroxyquinoline and 2,3-dihydroxyphenylpropionic acid were identified as the other intermediates. Inhibition of quinoline metabolism by 1 mM sodium arsenite led to the accumulation of pyruvate, whereas inhibition by 5 mM arsenite resulted in the accumulation of 2-hydroxyquinoline as the major metabolite and 2,8-dihydroxyquinoline as the minor metabolite. Coumarin was not utilized as a growth substrate by this bacterium, but quinoline-grown cells converted it to 2-hydroxyphenylpropionic acid, which was not further metabolized. Quinoline, 2-hydroxyquinoline, 8-hydroxycoumarin, and 2,3-dihydroxyphenylpropionic acid were rapidly oxidized by quinoline-adapted cells, whereas 2,8-dihydroxyquinoline was oxidized very slowly. Quinoline catabolism in this Pseudomonas sp. is therefore initiated by hydroxylation(s) of the molecule followed by cleavage of the pyridine ring to yield 8-hydroxycoumarin, which is further metabolized via 2,3-dihydroxyphenylpropionic acid.  相似文献   

11.
N-Acyl-D-glutamate amidohydrolase (D-AGase) from Pseudomonas sp. 5f-1 was a zinc-metalloenzyme which contained 2.06–2.61 g. atom of Zn per mole of enzyme. The zinc atom was required for the catalytic activity and stability of the enzyme. The N-terminal amino acid sequence of Pseudomonas sp. 5f-l D-AGase showed 32% identity to that of Alcaligenes xylosoxydans subsp. xylosoxydans A-6.  相似文献   

12.
The range of substituted naphthalenesulfonates which are metabolized by Pseudomonas sp. BN6 were investigated. Resting cells from strain BN6 oxidized 1- and 2-naphthalenesulfonate, 1-hydroxynaphthalene-2-sulfonate, 2,6-naphthalenedisulfonate and all monosulfonated naphthalene-2-sulfonates which carry one or two substitutents in the positions 4-, 5-, 6-, 7- or 8- of the naphthalene ring-system. With the exception of (substituted) 4- or 5-amino- and 4-hydroxynaphthalene-2-sulfonates these compounds were converted to the corresponding salicylates. Strain BN6 did not oxidize substituted naphthalene-1-sulfonates, 3-substituted naphthalenesulfonates and substituted naphthalenedisulfonates. Turnover of 4-amino- or 4-hydroxynaphthalene-2-sulfonates resulted in the accumulation of the corresponding naphthoquinones in the culture medium. Thus, degradation of 4-amino- and 4-hydroxynaphthalenesulfonates was restricted by the rapid autoxidation of the substituted 1,2-dihydroxynaphthalenes formed as metabolites. Catabolic activities of strain BN6 for naphthalenesulfonates were induced by salicylate, 3- or 6-hydroxysalicylate, and 3-, 4- or 5-aminosalicylate but not by 4- and 5-hydroxysalicylate. All naphthalenesulfonates that were not converted into the corresponding salicylates, were found to be inefficient as effectors. It was therefore concluded that (substituted) salicylates are the inducers of the relevant enzymes. The degradation of 2-naphthalene-sulfonate by a pure culture of strain BN6 was prevented by the toxicity of the dead-end product salicylate. Substituted salicylates were less toxic and allowed growth of strain BN6 in axenic culture with various substituted naphthalenesulfonates.Abbreviations AB aminobenzoate - ANS aminonaphthalenesulfonate - DHN dihydroxynaphthalene - DHNC dihydroxynaphthalene-carboxylate - DHNDO 1,2-dihydroxynaphthalene dioxygenase - HBPA 2-hydroxybenzalpyruvate aldolase - HNS hydroxynaphthalenesulfonate - HS hydroxysalicylate - Ind-C indolecarboxylate - Ind-S indolesulfonate - MANS N-methylaminonaphthalenesulfonate - NC naphthalenecarboxylate - NDS naphthalenedisulfonate - NQ naphthoquinone - NS naphthalenesulfonate - NSDO naphthalenesulfonate dioxygenase - Rt retention time - SADH salicylaldehyde dehydrogenase - THN trihydroxynaphthalene (hydroxy-1,2-dihydroxynaphthalene)  相似文献   

13.
假单胞菌酶法转化DL-ATC合成L-半胱氨酸   总被引:2,自引:0,他引:2  
采用微生物酶转化法制备L-半胱氨酸具有周期短、成本低、区域和立体选择性强、反应条件容易控制、环境友好等特点,与传统的毛发水解以及化学合成工艺相比显示出明显的优越性。本文从假单胞菌产酶条件和酶学性质、DL-ATC生物转化途径、固定化细胞转化工艺、基因工程菌的研究、以及L-半胱氨酸脱巯基酶的研究等5个方面介绍了国内外关于生物转化DL-2-氨基-Δ2-噻唑啉-4-羧酸(DL-ATC)合成L-半胱氨酸的研究进展。  相似文献   

14.
Transformation of Dibenzo-p-Dioxin by Pseudomonas sp. Strain HH69   总被引:3,自引:3,他引:3       下载免费PDF全文
Dibenzo-p-dioxin was oxidatively cleaved by the dibenzofuran-degrading bacterium Pseudomonas sp. strain HH69 to produce minor amounts of 1-hydroxydibenzo-p-dioxin and catechol, while a 2-phenoxy derivative of muconic acid was formed as the major product. Upon acidic methylation, the latter yielded the dimethylester of cis, trans-2-(2-hydroxyphenoxy)-muconic acid.  相似文献   

15.
The glyphosate-degrading Pseudomonas sp. strain PG2982 was found to utilize each of 10 organophosphonate compounds as a sole phosphorus source. Representative compounds tested included alkylphosphonates, 1-amino-substituted alkylphosphonates, amino-terminal phosphonates, and an arylphosphonate. This report demonstrates that PG2982 is capable of utilizing a wider range of structurally different organophosphonate compounds than any organism described to date.  相似文献   

16.
Pseudomonas sp. strain U2 was isolated from oil-contaminated soil in Venezuela by selective enrichment on naphthalene as the sole carbon source. The genes for naphthalene dioxygenase were cloned from the plasmid DNA of strain U2 on an 8.3-kb BamHI fragment. The genes for the naphthalene dioxygenase genes nagAa (for ferredoxin reductase), nagAb (for ferredoxin), and nagAc and nagAd (for the large and small subunits of dioxygenase, respectively) were located by Southern hybridizations and by nucleotide sequencing. The genes for nagB (for naphthalene cis-dihydrodiol dehydrogenase) and nagF (for salicylaldehyde dehydrogenase) were inferred from subclones by their biochemical activities. Between nagAa and nagAb were two open reading frames, homologs of which have also been identified in similar locations in two nitrotoluene-using strains (J. V. Parales, A. Kumar, R. E. Parales, and D. T. Gibson, Gene 181:57–61, 1996; W.-C. Suen, B. Haigler, and J. C. Spain, J. Bacteriol. 178:4926–4934, 1996) and a naphthalene-using strain (G. J. Zylstra, E. Kim, and A. K. Goyal, Genet. Eng. 19:257–269, 1997). Recombinant Escherichia coli strains with plasmids carrying this region were able to convert salicylate to gentisate, which was identified by a combination of gas chromatography-mass spectrometry and nuclear magnetic resonance. The first open reading frame, designated nagG, encodes a protein with characteristics of a Rieske-type iron-sulfur center homologous to the large subunits of dihydroxylating dioxygenases, and the second open reading frame, designated nagH, encodes a protein with limited homology to the small subunits of the same dioxygenases. Cloned together in E. coli, nagG, nagH, and nagAb, were able to convert salicylate (2-hydroxybenzoate) into gentisate (2,5-dihydroxybenzoate) and therefore encode a salicylate 5-hydroxylase activity. Single-gene knockouts of nagG, nagH, and nagAb demonstrated their functional roles in the formation of gentisate. It is proposed that NagG and NagH are structural subunits of salicylate 5-hydroxylase linked to an electron transport chain consisting of NagAb and NagAa, although E. coli appears to be able to partially substitute for the latter. This constitutes a novel mechanism for monohydroxylation of the aromatic ring. Salicylate hydroxylase and catechol 2,3-dioxygenase in strain U2 could not be detected either by enzyme assay or by Southern hybridization. However growth on both naphthalene and salicylate caused induction of gentisate 1,2-dioxygenase, confirming this route for salicylate catabolism in strain U2. Sequence comparisons suggest that the novel gene order nagAa-nagG-nagH-nagAb-nagAc-nagAd-nagB-nagF represents the archetype for naphthalene strains which use the gentisate pathway rather than the meta cleavage pathway of catechol.  相似文献   

17.
Bacterial iodate (IO3) reduction is poorly understood largely due to the limited number of available isolates as well as the paucity of information about key enzymes involved in the reaction. In this study, an iodate-reducing bacterium, designated strain SCT, was newly isolated from marine sediment slurry. SCT is phylogenetically closely related to the denitrifying bacterium Pseudomonas stutzeri and reduced 200 μM iodate to iodide (I) within 12 h in an anaerobic culture containing 10 mM nitrate. The strain did not reduce iodate under the aerobic conditions. An anaerobic washed cell suspension of SCT reduced iodate when the cells were pregrown anaerobically with 10 mM nitrate and 200 μM iodate. However, cells pregrown without iodate did not reduce it. The cells in the former category showed methyl viologen-dependent iodate reductase activity (0.31 U mg−1), which was located predominantly in the periplasmic space. Furthermore, SCT was capable of anaerobic growth with 3 mM iodate as the sole electron acceptor, and the cells showed enhanced activity with respect to iodate reductase (2.46 U mg−1). These results suggest that SCT is a dissimilatory iodate-reducing bacterium and that its iodate reductase is induced by iodate under anaerobic growth conditions.  相似文献   

18.
Microbial transformation of quinoline by a Pseudomonas sp   总被引:1,自引:0,他引:1  
A Pseudomonas sp. isolated from sewage by enrichment culture on quinoline metabolized this substrate by a novel pathway involving 8-hydroxycoumarin. During early growth of the organism on quinoline, 2-hydroxyquinoline accumulated as the intermediate; 8-hydroxycoumarin accumulated as the major metabolite on further incubation. 2,8-Dihydroxyquinoline and 2,3-dihydroxyphenylpropionic acid were identified as the other intermediates. Inhibition of quinoline metabolism by 1 mM sodium arsenite led to the accumulation of pyruvate, whereas inhibition by 5 mM arsenite resulted in the accumulation of 2-hydroxyquinoline as the major metabolite and 2,8-dihydroxyquinoline as the minor metabolite. Coumarin was not utilized as a growth substrate by this bacterium, but quinoline-grown cells converted it to 2-hydroxyphenylpropionic acid, which was not further metabolized. Quinoline, 2-hydroxyquinoline, 8-hydroxycoumarin, and 2,3-dihydroxyphenylpropionic acid were rapidly oxidized by quinoline-adapted cells, whereas 2,8-dihydroxyquinoline was oxidized very slowly. Quinoline catabolism in this Pseudomonas sp. is therefore initiated by hydroxylation(s) of the molecule followed by cleavage of the pyridine ring to yield 8-hydroxycoumarin, which is further metabolized via 2,3-dihydroxyphenylpropionic acid.  相似文献   

19.
Pseudomonas sp. strain NGK1, a soil bacterium isolated by naphthalene enrichment from biological waste effluent treatment, capable of utilizing 2-methylnaphthalene as sole source of carbon and energy. To deduce the pathway for biodegradation of 2-methylnaphthalene, metabolites were isolated from the spent medium and identified by thin-layer chromatography and high-performance liquid chromatography. The characterization of purified metabolites, oxygen uptake studies, and enzyme activities revealed that the strain degrades 2-methylnaphthalene through more than one pathway. The growth of the bacterium, utilization of 2-methylnaphthalene, and 4-methylsalicylate accumulation by Pseudomonas sp. strain NGK1 were studied at various incubation periods. Received: 20 March 2001 / Accepted: 25 April 2001  相似文献   

20.
A bacterial strain, designated Pseudomonas sp. strain DCA1, was isolated from a 1,2-dichloroethane (DCA)-degrading biofilm. Strain DCA1 utilizes DCA as the sole carbon and energy source and does not require additional organic nutrients, such as vitamins, for optimal growth. The affinity of strain DCA1 for DCA is very high, with a Km value below the detection limit of 0.5 μM. Instead of a hydrolytic dehalogenation, as in other DCA utilizers, the first step in DCA degradation in strain DCA1 is an oxidation reaction. Oxygen and NAD(P)H are required for this initial step. Propene was converted to 1,2-epoxypropane by DCA-grown cells and competitively inhibited DCA degradation. We concluded that a monooxygenase is responsible for the first step in DCA degradation in strain DCA1. Oxidation of DCA probably results in the formation of the unstable intermediate 1,2-dichloroethanol, which spontaneously releases chloride, yielding chloroacetaldehyde. The DCA degradation pathway in strain DCA1 proceeds from chloroacetaldehyde via chloroacetic acid and presumably glycolic acid, which is similar to degradation routes observed in other DCA-utilizing bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号