首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A new process for (6S)-tetrahydrofolate production from dihydrofolate was designed that used dihydrofolate reductase and an NADPH regeneration system. Glucose dehydrogenase from Gluconobacter scleroides KY3613 was used for recycling of the cofactor. The reaction mixture contained 200 mM dihydrofolate, 220 mM glucose, 2 mM NADP, 14.4 U/ml dihydrofolate reductase, and 14.4 U/ml Glucose dehydrogenase, and the reaction was complete after incubation at pH 8.0, and 40 degrees C for 2.5 hr. With (6S)-tetrahydrofolate as the starting material, l-leucovorin was synthesized via a methenyl derivative. The purity of the l-leucovorin was 100%, and its diastereomeric purity was greater than 99.5% d.e. as the (6S)-form.  相似文献   

2.
To develop an economical industrial medium, untreated cane molasses (UCM) was tested as a carbon source for fermentation culturing of Escherichia coli. To test the industrial application of this medium, we chose a strain co-expressing a carbonyl reductase (PsCR) and a glucose dehydrogenase (BmGDH). Although corn steep liquor (CSL) could be used as an inexpensive nitrogen source to replace peptone, yeast extract could not be replaced in E. coli media. In a volume of 40 ml per 1-l flask, a cell concentration of optical density (OD600) 15.1 and enzyme activities of 6.51 U/ml PsCR and 3.32 U/ml BmGDH were obtained in an optimized medium containing 25.66 g/l yeast extract, 3.88 g/l UCM, and 7.1% (v/v) CSL. When 3.88 g/l UCM was added to the medium at 6 h in a fed-batch process, the E. coli concentration increased to OD600 of 24, and expression of both PsCR and BmGDH were twofold higher than that of a batch process. Recombinant cells from batch or fed-batch cultures were assayed for recombinant enzyme activity by testing the reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (S)-4-chloro-3-hydroxybutanoate (CHBE). Compared to cells from batch cultures, fed-batch cultured cells showed higher recombinant enzyme expression, producing 560 mM CHBE in the organic phase with a molar yield of 92% and an optical purity of the (S)-isomer of >99% enantiomeric excess.  相似文献   

3.
The 5-position of tetrahydrofolate was found to be unusually reactive with low concentrations of formic acid in the presence of a water-soluble carbodiimide. The product of this reaction has neutral and acid ultraviolet spectra and chromatographic behavior consistent with its identity as 5-formyltetrahydrofolate (leucovorin). When enzymatically synthesized (6S)-tetrahydrofolate was used as starting material, the product supported the growth of folatedepleted L1210 cells at one-half the concentration required for authentic (6R,S)-leucovorin. This reaction has been used to produce high specific activity (44 Ci/mmol) [3H](6S)-5-formyltetrahydrofolate in high yield. Experiments with [14C]formic acid indicate that 1 mol of formate reacted per mol of tetrahydrofolate but that no reaction occurred with a variety of other folate compounds. (6S)-5-Formyltetrahydrofolate, labeled in the formyl group with 14C, has also been synthesized using this reaction. These easily produced, labeled folates should allow close examination of the transport and utillization of leucovorin and of the mechanism of reversal of methotrexate toxicity by reduced folate cofactors.  相似文献   

4.
Abstract

To develop an efficient biocatalyst to produce optically active (S)-phenyl ethanediol (PED), a carbonyl reductase SCRII and glucose 6-phosphate dehydrogenase were coexpressed intracellularly in Pichia pastoris. The recombinant enzyme PpSCRII was purified with a specific activity of 8.32 U mg?1, over 36% higher than that of Escherichia coli SCRII. The recombinant cells P. pastoris/SCRIIG catalyzed the reduction of 2-hydroxyacetophenone to give (S)-PED with optical purity of >99% in a yield of 96.3%. The yield was improved by 19.9% and 25.7% over E. coli BL21/SCRII and Candida parapsilosis, respectively, when the reaction duration was shorted from 48 h to 24 h. When using glucose 50 g L?1 as co-substrate, these P. pastoris/SCRIIG cells could be reused ten times and the optical purity and yield of (S)-PED kept at >99% enantiomeric excess and >85%, respectively.  相似文献   

5.
An NADPH-dependent sorbose reductase from Candida albicans was identified to catalyze the asymmetric reduction of ethyl 4-chloro-3-oxobutanoate (COBE). The activity of the recombinant enzyme toward COBE was 6.2 U/mg. The asymmetric reduction of COBE was performed with two coexisting recombinant Escherichia coli strains, in which the recombinant E. coli expressing glucose dehydrogenase was used as an NADPH regenerator. An optical purity of 99% (e.e.) and a maximum yield of 1240 mM (S)-4-chloro-3-hydroxybutanoate were obtained under an optimal biomass ratio of 1:2. A highest turnover number of 53,900 was achieved without adding extra NADP+/NADPH compared with those known COBE-catalytic systems.  相似文献   

6.
Optically pure l-leucovorin was synthesized on a large scale by the combination of chemical and enzymatic processes. After reduction of folate with zinc, dihydrofolate was reduced asymmetrically to (6)-tetra-hydrofolate by use of dihydrofolate reductase from E. coli C600/pTP600, with simultaneous NADPH cofactor recycling using glucose dehydrogenase from Gluconobacter scleroideus KY3613. Calcium l-leucovorin.4H2O (113 g) was obtained from (6S)-tetrahydrofolate via 5,10-methyenyltetrahydrofolate by formylation, reflux, addition of calcium ions and floricil column chromatography, with an overall yield of 50% based on folate. The l-leucovorin showed optical purity of 99.9% de as (6S)-form.  相似文献   

7.
A unique group of mutations (amer) in the dihydrofolate reductase (5,6,7,8-tetrahydrofolate:NADP+ oxidoreductase, EC 1.5.1.3.) structural gene of Diplococcus pneumoniae determine a marked overproduction of the corresponding enzyme protein. Since findings with these mutations relate to a key metabolic function and may be important to the regulation of folate coenzyme synthesis in general, the same group of multations were also examined for their effects on a number of related enzymic activities. Mutant and wild-type cell-free extracts, in addition to dihydrofolate reductase activity, exhibited both dihydropteroate and dihydrofolate synthetic activities under the conditions employed. Four folate coenzyme-related enzyme activities could also be demonstrated with the same preparations. These are mediated by the following enzymes, serine hydroxymethyl transferase (l-serine: tetrahydrofolate 10-hydroxymethyl tranferase, EC 2.1.2.1), 5, 10-methylenetetrahydrofolate dehydrogenase (5,10-methylenetetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.5), 10-formyltetrahydrofolate synthetase (formate: tetrahydrofolate ligase (ADP-forming), EC 6.3.4.3) and glutamate formiminotransferase (N-formimino-l-glutamate: tetrahydrofolate 5-formiminotransferase, EC 2.1.2.5). The amer mutations examined in the current study determined 3–80-fold increases in dihydrofolate reductase in comparison to the wild type. However, none of the other folate-related enzyme activities were altered. The possible significance of these findings in light of previous results is discussed.  相似文献   

8.
A novel NADPH-dependent reductase (CaCR) from Candida albicans was cloned for the first time. It catalyzed asymmetric reduction to produce ethyl (S)-4-chloro-3-hydroxybutanoate ((S)-CHBE). It contained an open reading frame of 843 bp encoding 281 amino acids. When co-expressed with a glucose dehydrogenase in Escherichia coli, recombinant CaCR exhibited an activity of 5.7 U/mg with ethyl 4-chloro-3-oxobutanoate (COBE) as substrate. In the biocatalysis of COBE to (S)-CHBE, 1320 mM (S)-CHBE was obtained without extra NADP+/NADPH in a water/butyl acetate system, and the optical purity of the (S)-isomer was higher than 99% enantiomeric excess.  相似文献   

9.
Dihydrofolate reductase from methotrexate-resistant Lactobacillus casei was immobilized on carbodiimide-activated CH-Sepharose. The immobilized enzyme was utilized in the synthesis of (-)-5,6,7,8-tetrahydrofolate from dihydrofolate and NADPH in a batchwise reaction system. The products of the reaction, (-)-tetrahydrofolate and NADP+, were separated on a Sephadex G-10 column equilibrated with 50 mM NH4HCO3 containing beta-mercaptoethanol and ethanol. The tetrahydrofolate was then characterized by ultraviolet and circular dichroic spectra and its reactivity as a cofactor in the thymidylate synthetase reaction.  相似文献   

10.
We have investigated culture conditions for production of dihydrofolate reductase by Escherichia coli harboring a high expression plasmid, pTP64-1. Sorbitol addition and pH control were effective for the production of the enzyme in a jar fermentor. The enzyme was purified from a cell-free extract by column chromatographies on DEAE-Cellulofine and Superose Prep12 and showed a single band on SDS-polyacrylamide gel electrophoresis. The reduction of 200 mM dihydrofolate to 6(S)-tetrahydrofolate, an intermediate for l-leucovorin synthesis, was complete in 2 hr under anaerobic conditions, using 1.5 units/ml of the purified enzyme.  相似文献   

11.
Chiral alcohols are useful as intermediates for the synthesis of drugs. In the production of chiral alcohols, microbial enzymes are promising since high optical purity is required. Under these conditions, the reaction by resting cells is more convenient and inexpensive than by an enzyme reaction. Chiral 1,2‐propanediol and 2,3‐butanediol were obtained using cells expressing the enzyme which demonstrated high stereospecificity. By means of recombinant cells expressing the glycerol dehydrogenase of Hansenula polymorpha DL‐1, the medium was enriched with (S)‐1,2‐propanediol (98 % enantiometric excess, e.e.) during a 24‐h incubation, whereas the (R)‐form was removed from 100 mM of the racemate (R:S = 1:1). For an asymmetric reduction, a recombinant was constructed which also expressed the glucose dehydrogenase gene of Bacillus subtilis origin as an NADH reproducer. In the resting cell reaction, the pH control at 7.5 promoted the conversion from ketone to alcohol. (2R,3R)‐2,3‐butanediol (e.e. > 99.9 %; 308 mM) was produced from 800 mM acetoin (R:S = 3:4); (R)‐1,2‐propanediol (e.e. > 99.9 %; 550 mM) from 800 mM acetol in a 33‐h incubation by the addition of glucose and ketone with pH control. In this reaction, (S)‐forms of both 2,3‐butanediol and 1,2‐propanediol were not produced. The pH control and feeding of the substrates were uncomplicated. The production process of the chiral alcohol by the recombinants which expresses glycerol dehydrogenase proved convenient.  相似文献   

12.
Biotechnological production and applications of coenzyme Q10   总被引:4,自引:0,他引:4  
An efficient whole cell biotransformation process using Lactobacillus kefir was developed for the asymmetric synthesis of tert-butyl (3R, 5S) 6-chloro-dihydroxyhexanoate, a chiral building block for the HMG-CoA reductase inhibitor. The effects of buffer concentration, temperature, pH and oxygen on the asymmetric reduction were investigated in batch reactions. Improvements in final product concentration and yields of 153% (120 mM) and 79% (0.85 mol/mol) with respect to the batch-process were achieved in an optimised fed-batch process. The pure substrate tert-butyl-6-chloro-3,5-dioxohexanoate was dispersed as microdroplets into the reaction system. This resulted in a space-time yield of 4.7 mmol l−1 h−1. A diastereomeric excess of >99% was measured for (3R, 5S) and (3S, 5S) tert-butyl 6-chloro-dihydroxyhexanoate.  相似文献   

13.
An efficient fedbatch process for the production of Lactobacillus kefir DSM 20587 cells was developed. An improvement in space time yield of 270% (3.7 gDCW l–1 day–1) and in final enzyme activity of 440% (9.1 U/ml) was achieved on a 150 l scale by controlling the oxygen transfer rate to 7–9 mmol l–1 h–1. The cells exhibited good and highly stereoselective reducing activities against tert-butyl 6-chloro-3,5-dioxohexanoate. tert-Butyl (3R,5S)-6-chloro-dihydroxyhexanoate, a chiral building block for HMG-CoA reductase inhibitor synthesis, was produced with 47.5% yield and >99% ee at C33 and C55 in a simple batch biotransformation process.  相似文献   

14.
tert-Butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate ((3R,5S)-CDHH) is an important chiral intermediate for the synthesis of rosuvastatin. The biotechnological production of (3R,5S)-CDHH is catalyzed from tert-butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate ((S)-CHOH) by a carbonyl reductase, and this synthetic pathway is becoming a primary route for (3R,5S)-CDHH production due to its high enantioselectivity, mild reaction conditions, low cost, process safety, and environmental friendship. However, the requirement of the pyridine nucleotide cofactors, reduced nicotinamide adenine dinucleotide (NADH) or reduced nicotinamide adenine dinucleotide phosphate (NADPH) limits its economic flexibility. In the present study, a recombinant Escherichia coli strain harboring carbonyl reductase R9M and glucose dehydrogenase (GDH) was constructed with high carbonyl reduction activity and cofactor regeneration efficiency. The recombinant E. coli cells were applied for the efficient production of (3R,5S)-CDHH with a substrate conversion of 98.8%, a yield of 95.6% and an enantiomeric excess (e.e.) of >99.0% under 350 g/L of (S)-CHOH after 12 hr reaction. A substrate fed-batch strategy was further employed to increase the substrate concentration to 400 g/L resulting in an enhanced product yield to 98.5% after 12 hr reaction in a 1 L bioreactor. Meanwhile, the space–time yield was 1,182.3 g L−1 day−1, which was the highest value ever reported by a coupled system of carbonyl reductase and glucose dehydrogenase.  相似文献   

15.
Wet cells of Nocardia fusca AKU 2123 are good catalysts for the production of (R)-3-pentyn-2-ol (PYOH) from (RS)-PYOH through a stereoinversion reaction. Under optimal conditions (350 mM potassium phosphate buffer, pH 8.0, 30% (w/v) wet cells, 0.12% NADPH, 10% glucose, and 30 U/ml glucose dehydrogenase) (R)-PYOH of high optical purity (98.7% e.e.) was produced from 2% (v/v) (RS)-PYOH with a yield of 70.4% by 140 h incubation. Received: 22 January 1999 / Received revision: 23 April 1999 / Accepted: 1 May 1999  相似文献   

16.
Pediococcus cerevisiae/AMr, resistant to amethopterin, possesses a higher dihydrofolate reductase (5, 6, 7, 8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) activity than the parent, a folate-permeable and thus amethopterin-susceptible strain and than the wild-type. The properties of dihydrofolate reductase from the three strains have been compared. Temperature, pH optima, heat stability, as well amethopterin binding did not reveal significant differences between the enzymes from the susceptible and resistant strains. The enzyme from the wild-type was 10 times more sensitive to inhibition by amethopterin and more susceptible to heat denaturation. The apparent Km values for dihydrofolate in enzymes from the three strains were in the range of 4.8–7.2 μM and for NADPH 6.5–8.0 μM. The amethopterin-resistant strain exhibited cross-resistance to trimethoprim and was about 40-fold more resistant to the latter than the sensitive parent and the wild-type. The resistance to trimethoprim appears to be a direct result of the increased dihydrofolate reductase activity. Inhibition of dihydrofolate reductase activity by this drug was similar in the three strains. 10–20 nmol caused 50% inhibition of 0.02 enzyme unit. Trimethoprim was about 10 000 times less effective inhibitor of dihydrofolate reductase than amethopterin. The cell extract of the AMr strain possessed a folate reductase activity three times higher than that of the sensitive strain. The activities of other folate-related enzymes like thymidylate synthethase and 10-formyltetra-hydrofolate synthetase (formate: tetrahydrofolate ligase (ADP)-forming), EC 6.3.4.3) were similar in the three strains studied.  相似文献   

17.
A recombinant Escherichia coli (pBAB1) containing styrene monooxygenase (SMO) was developed for the conversion of styrene to enantiopure (S)-styrene oxide that is an important chiral building block in organic synthesis. The styAB genes encoding SMO was cloned into a multicopy plasmid under the tightly regulated promoter of bacterial l-arabinose operon which is inducible by l-arabinose. The recombinant showed that expression level of StyA protein and whole-cell SMO activities were varied depending on the concentration of the inducer l-arabinose. The maximum SMO activity was 108 U/g cdw when the cells were induced with 0.2% l-arabinose. SDS-PAGE and Western blot analyses indicated that whole-cell SMO activity was strongly correlated with the expression level of StyA protein. Organic-aqueous two-phase experiment could yield 50 mM enantiopure (S)-styrene oxide in organic phase in 18 h, but the recombinant SMO activity was unstable during the reaction. The expression of styAB under the control of l-arabinose promoter was significantly repressed in the presence of glucose.  相似文献   

18.
A cofactor regeneration system for enzymatic biosynthesis was constructed by coexpressing a carbonyl reductase from Pichia stipitis and a glucose dehydrogenase from Bacillus megaterium in Escherichia coli Rosetta (DE3) PlySs. Transformants containing the polycistronic plasmid pET-PII-SD2-AS1-B exhibited an activity of 13.5 U/mg protein with 4-chloro-3-oxobutanoate ethyl ester (COBE) as the substrate and an activity of 14.4 U/mg protein with glucose as the substrate; NAD(H) was the coenzyme in both cases. Asymmetric reduction of COBE to (S)-4-chloro-3-hydroxybutanoate ethyl ester [(S)-CHBE] with more than 99% enantiomeric excess was demonstrated by transformants. Furthermore, the paper made a comparison of crude enzyme catalysis and whole-cell catalysis in an aqueous monophasic system and a water/organic solvent biphasic system. In the water/n-butyl acetate system, the coexpression system produced 1,398 mM CHBE in the organic phase, which is the highest yield ever reported for CHBE production by NADH-dependent reductases from yeasts. In this case, the molar yield of CHBE was 90.7%, and the total turnover number, defined as moles (S)-CHBE formed per mole NAD+, was 13,980.  相似文献   

19.
E. coli (P450pyrTM‐GDH) with dual plasmids, pETDuet containing P450pyr triple mutant I83H/M305Q/A77S (P450pyrTM) and ferredoxin reductase (FdR) genes and pRSFDuet containing glucose dehydrogenase (GDH) and ferredoxin (Fdx) genes, was engineered to show a high activity (12.7 U g?1 cdw) for the biohydroxylation of N‐benzylpyrrolidine 1 and a GDH activity of 106 U g?1 protein. The E. coli cells were used as efficient biocatalysts for highly regio‐ and stereoselective hydroxylation of alicyclic substrates at non‐activated carbon atom with enhanced productivity via intracellular recycling of NAD(P)H. Hydroxylation of N‐benzylpyrrolidine 1 with resting cells in the presence of glucose showed excellent regio‐ and stereoselectivity, giving (S)‐N‐benzyl‐3‐hydroxypyrrolidine 2 in 98% ee as the sole product in 9.8 mM. The productivity is much higher than that of the same biohydroxylation using E. coli (P450pyrTM)b without expressing GDH. E. coli (P450pyrTM‐GDH) was found to be highly regio‐ and stereoselective for the hydroxylation of N‐benzylpyrrolidin‐2‐one 3 , improving the regioselectivity from 90% of the wild‐type P450pyr to 100% and giving (S)‐N‐benzyl‐4‐hydroxylpyrrolidin‐2‐one 4 in 99% ee as the sole product. A high activity of 15.5 U g?1 cdw was achieved and (S)‐ 4 was obtained in 19.4 mM. E. coli (P450pyrTM‐GDH) was also found to be highly regio‐ and stereoselective for the hydroxylation of N‐benzylpiperidin‐2‐one 5 , increasing the ee of the product (S)‐N‐benzyl‐4‐hydroxy‐piperidin‐2‐one 6 to 94% from 33% of the wild‐type P450pyr. A high activity of 15.8 U g?1 cdw was obtained and (S)‐ 6 was produced in 3.3 mM as the sole product. E. coli (P450pyrTM‐GDH) represents the most productive system known thus far for P450‐catalyzed hydroxylations with cofactor recycling, and the hydroxylations with E. coli (P450pyrTM‐GDH) provide with simple and useful syntheses of (S)‐ 2 , (S)‐ 4 , and (S)‐ 6 that are valuable pharmaceutical intermediates and difficult to prepare. Biotechnol. Bioeng. 2013; 110: 363–373. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Optically active alcohols are important building blocks as versatile chiral synthons for asymmetric syntheses of pharmaceuticals and agrochemicals. The aim of this paper is to efficiently prepare chiral 2‐pentanol by means of microorganisms. The gene of dihydroxyacetone reductase (EC 1.1.1.6) from a methylotrophic yeast, Hansenula ofunaensis, was cloned and chiral 2‐pentanol was produced by the recombinant Escherichia coli harboring the gene. The gene encoding the enzyme was cloned from an H. ofunaensis genomic library. In the deduced amino acid sequence of 364 residues, the NAD(H) binding motif and the cysteine residues that correspond to the cysteine ligands in the zinc atom were conserved, as they are in alcohol dehydrogenases from other origins. Dihydroxyacetone reductase was similar to alcohol dehydrogenases of prokaryotes. For the production of chiral compounds, an E. coli HB101 strain was transformed. The H. ofunaensis gene product, dihydroxyacetone reductase, catalyzed the NAD+‐dependent oxidation of 2‐pentanol to 2‐pentanone as well as the corresponding reverse reactions, showing specificity towards the secondary alcohol in (R)‐configuration. From 100 mM 2‐pentanone, (R)‐2‐pentanol (98 mM, > 99.9 % enantiometric excess, e.e.) was obtained in a 30‐min reaction with resting cells of the E. coli HB101 strain harboring the expression plasmid, pSG‐HOD1, which possesses the genes of both dihydroxyacetone reductase and glucose dehydrogenase as an NADH reproducing system. The stereospecificity changed during the reduction, depending on the pH. E. coli HB101 was also transformed by the expression plasmid, pSE‐HOD4, in which the gene of glucose dehydrogenase was removed from pSG‐HOD1, and designated as E. coli HB101 (pSE‐HOD4). E. coli HB101 (pSE‐HOD4) oxidized only (R)‐2‐pentanol in 100 mM of the racemate (R:S = 52:48), and the reaction medium was enriched with (S)‐2‐pentanol (48 mM, 98 % e.e.) after 30 min of incubation. The reaction was sufficiently promoted without the other additives. E. coli transformants expressing the gene of this enzyme could be particularly advantageous to the production of optically active 2‐pentanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号