首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The processing suitability as a material for rice crackers was characterized in the present study, based on physicochemical measurements and sensory testing of high-quality premium rice, low-amylose rice, Japonica-Indica hybrid rice, and red rice as the rice cultivar samples. Puffed rice crackers were prepared and the relationship between the physicochemical properties of the rice grains and the quality of the resulting products was investigated. It was possible to estimate the physical properties of a rice cracker by using multiple-regression analysis based on the chemical components, pasting properties and physical properties of the constituent rice. A formula for estimating the amylose content of the constituent rice was developed from the results of physicochemical measurements of the rice crackers. We assayed the quality of commercial rice crackers and examined the deterioration during the storage by measuring the physicochemical properties. The hardness and fat acidity of crackers increased markedly during storage for 20 d at 35 °C. The novel method of a one-bite test with a Tensipresser was useful to assay the quality of a rice cracker and made it possible to evaluate the quality deterioration of the rice cracker during storage.  相似文献   

2.
Lipoxygenase (LOX) is a common enzyme which catalyzes lipid peroxidation of seeds and consequently enhances seed quality deterioration and decreases seed viability. During seed storage, peroxidation of unsaturated fatty acids occur due to enhancement of LOX activity which directly leads to reduction in seed vigour and deterioration of grain nutritional quality. This study was undertaken to overcome these problem during rice seed storage by attenuating LOX activity using RNAi technology. To improve seed storage stability, we down regulated LOX gene activity by using a functional fragment of the LOX gene under the control of both constitutive (CaMV35S) and aleurone-specific (Oleosin-18) promoter separately. To understand the storage stability, RNAi–LOX seeds and non-transgenic control seeds were subjected to accelerated aging at 45 °C and 85 % relative humidity for 14 days. Our studies demonstrate that down regulation of LOX activity reduces the seed quality deterioration under storage condition. In addition GC–MS analysis revealed that reduction of fatty acid level in non-transgenic seeds during storage was higher when compared with that of transgenic rice seeds. Furthermore, the transgenic rice seeds with reduced LOX activity exhibited enhanced seed germination efficiency after storage than that of non-transgenic rice seeds. This study will have direct impact on nutritional stability of quality rice grains.  相似文献   

3.
There are many reports on the deterioration during storage of rice flavor, but no work has yet been done to relate the change during storage in rheological properties with the change in lipid composition. The present study revealed that the increase in amounts of free fatty acids during rice storage resulted in the increase in maximum viscosity of amylogram, i.e., deterioration in rheological property of cooked rice. The mechanism is explained by the formation of helical structure of starch molecule with fatty acid.  相似文献   

4.
Rice flour was stored at 15 °C/9 months, at 35 °C/14 days, or dry-heated at 120 °C/20 min. The breadmaking properties baked with this rice flour/fresh gluten flour deteriorated. In addition, the rice flour was mixed with oil in water vigorously, and oil-binding ability was measured. Every rice flour subjected to storage or dry-heated at 120 °C showed higher hydrophobicity, owing to changes in proteins. Then, proteins in the stored rice flour were excluded with NaOH solution, and bread baked with the deproteinized rice flour showed the same breadmaking properties as unstored rice flour/fresh gluten flour. The viscoelasticity of wheat glutenin fraction decreased after the addition of dry-heated rice flour in a mixograph profile. DDD staining increased Lab in color meter, which suggested an increase in SH groups in rice protein. The increase in SH groups caused a reduction in wheat gluten protein resulting in a deterioration of rice bread quality.  相似文献   

5.
Starch, composed of amylose and amylopectin, greatly influences rice cooking and textural quality, which in turn is controlled by various isoforms of several enzymes. Activity of one or more isoforms of starch‐synthesizing enzymes results in various forms of starch structure based on the amylopectin chain length and average external, internal and core chain length distribution and hence results in varying physicochemical and cooking quality. Since the synthesis of starch is highly complex, it is crucial but essential to understand its biosynthetic pathway, starch structure and effects on the physicochemical properties that control eating and cooking quality, and alongside conduct research on gene/QTL mapping for use in marker-assisted selection (MAS) with a view to improve and select cultivars with most desirable range and class of rice starch properties. This article presents the updates on current understanding of the coordination among various enzymes/isoforms towards rice starch synthesis in endosperm and their effect on rice grain physicochemical, cooking and eating qualities. The efforts in identifying regions responsible for these enzymes by mapping the gene/QTLs have provided a glimpse on their association with physicochemical and cooking properties of rice and, hence, improvement is possible by modifying the allelic pattern, resulting in down or nil regulation of a particular enzyme. The clear understanding of the tissue specific coordination between enzyme isoforms and their subsequent effect in controlling eating and cooking properties will enhance the chances to manipulate them for getting desired range of amylose content (AC) and gelatinization temperature (GT) in improved cultivars through combining desired alleles through MAS.  相似文献   

6.
Reactive oxygen species (ROS) are usually produced in rice under aerobic environmental conditions, resulting in peroxidative changes in polyunsaturated fatty acids, and affecting the deterioration of rice during storage. In addition, as an important enzyme that participates in removing ROS, peroxidase is also present in rice, and takes part in protecting rice from attack by ROS. Moreover, loss of peroxidase activity may give rise to rice deterioration during storage. Therefore, measuring peroxidase activity makes it possible to ascertain the freshness of rice. In addition, peroxidase can also catalyze the luminol–hydrogen peroxide system. Based on this, in this work we established a new chemiluminescence (CL) method that was used to detect the freshness of stored rice. Under optimal experimental conditions, we showed that the freshness of rice can be measured using this CL method. This study is the first to detect the freshness of rice using a CL method, opening up a novel direction for the application of CL.  相似文献   

7.
8.
9.
Global atmospheric carbon dioxide concentration ([CO2]) is increasing rapidly. The Intergovernmental Panel on Climate Change estimated that atmospheric [CO2] has risen from approximately 280 μmol mol?1 in pre-industrial times to approximately 381 μmol mol?1 at present and will reach 550 μmol mol?1 by 2050. In the absence of strict emission controls, atmospheric [CO2] is likely to reach 730–1020 μmol mol?1 by 2100. Rising atmospheric [CO2] is the primary driver of global warming, but as the principal substrate for photosynthesis it also directly affects the yield and quality of crops. Food quality is receiving much more attentions recently, however, compared with grain yield, our understanding in the response of grain quality to elevated [CO2] is very limited. Rice (Oryza sativa L.) is one of the most important crops in the world and the first staple food in Asia, providing nutrition to a large proportion of the world’s population. Elevated [CO2] leads to numerous physiological changes in rice crops, such as changes in the photosynthesis and assimilate translocation, nutrient uptake and translocation, water relation, and altered gene expression and enzyme activity. These altered processes are very likely to affect the chemical and physical characteristics of rice grains. In this review, we first describe main characteristics of rice grain quality, and then summarize findings in literature related to the impact of elevated [CO2] on grain quality falling into four categories: processing quality, appearance, cooking and eating quality, and nutritional quality, as well as the possible mechanisms responsible for the observed impacts. Elevated [CO2] caused serious deterioration of processing suitability, in particular, head rice percentage was significantly decreased. In most cases, elevated [CO2] increased chalkiness of rice grains. The evaluation of physicochemical characteristics together with starch Rapid Visco Analyser (RVA) properties indicated no change or small changes in cooking and eating quality under elevated [CO2], and these changes could not be detected by sensory taste panel evaluation. Elevated [CO2] significantly decreased nitrogen or protein concentration in rice grains, while in most cases other macro- and micro-nutrients showed no change or decrease in concentration. In addition, the responses of rice quality to elevated [CO2] might be modified by varieties, applied fertilizer rates or gas fumigation methodologies. The available information in the literature indicates a clear tendency of quality deterioration and thus lower commercial value for rice grains grown under a projected high CO2 environment. Understanding the factors causing quality deterioration in rice and the related biological mechanisms might be the utmost important scientific theme in future research. Here we also discuss the necessity of formulating adaptation strategies for rice production in future atmospheric environments, nevertheless, the increase in yield, the improvement in quality and stress resistance of rice should be combined and integrated into the adaptation approaches. Compared with enclosure studies, the field experiments using Free-Air CO2 Enrichment (FACE) system provide sufficient experimental space and the most realistic mimic of a future high CO2 atmosphere, and give scientists perhaps the best opportunity to achieve multiple goals.  相似文献   

10.
Decline in soil fertility accelerated by shorter fallow periods was expected to be a major constraint in slash-and-burn rice production systems in northern Laos. In this paper we describe relationships between fallow period, soil fertility parameters, weeds and rice yield. Soil infertility is not perceived a major yield constraint by the farmers. Of the various soil parameters observed only soil organic matter showed consistent association with rice yield (r=0.42, p<0.01). Fallow period and rice yield showed no association and the relationship between fallow and organic matter was very weak (r=0.16, p<0.01). Rice yield was negatively related to densities of Ageratum conyzoides and Lygodium flexuosum. Soil loss during the cropping period ranged from 300–29.300 kg ha–1. For the same period organic matter, total N, available P and available K content in the top 0–3 cm decreased by 11,12,17, and 17%, respectively, and loss of total N for the soil depth of 0–25 cm was estimated at 400 kg ha–1. Soil physical properties, moisture stress and available N are the most likely detriments to rice yields. Further attempts to relate soil properties to rice yield should include repeated measurements during the cropping season and observations on soil physical properties.The research presented was supported by the Provincial Agriculture Service, Luang Prabang, Laos, and the Swiss Development Cooperation.  相似文献   

11.
Kinetic solubility measurements using prototypical assay buffer conditions are presented for a ~58,000 member library of small molecules. Analyses of the data based upon physical and calculated properties of each individual molecule were performed and resulting trends were considered in the context of commonly held opinions of how physicochemical properties influence aqueous solubility. We further analyze the data using a decision tree model for solubility prediction and via a multi-dimensional assessment of physicochemical relationships to solubility in the context of specific 'rule-breakers' relative to common dogma. The role of solubility as a determinant of assay outcome is also considered based upon each compound's cross-assay activity score for a collection of publicly available screening results. Further, the role of solubility as a governing factor for colloidal aggregation formation within a specified assay setting is examined and considered as a possible cause of a high cross-assay activity score. The results of this solubility profile should aid chemists during library design and optimization efforts and represent a useful training set for computational solubility prediction.  相似文献   

12.
The characteristics of starch, such as gelatinization temperature (GT), apparent amylose content (AAC), pasting temperature (PT) and other physicochemical properties, determine the quality of various products of rice, e.g., eating, cooking and processing qualities. The GT of rice flour is controlled by the alk locus, which has been co-mapped to the starch synthase IIa (SSIIa) locus. In this study, we sequenced a 2,051 bp DNA fragment spanning part of intron 6, exon 7, intron 7, exon 8 and part of 3′ untranslated region of SSIIa for 30 rice varieties with diverse geographical distribution and variation in starch physicochemical properties. A total of 24 single nucleotide polymorphisms (SNPs) and one insertion/deletion (InDel) were identified, which could be classified into nine haplotypes. The mean pairwise nucleotide diversity π was 0.00292, and Watterson’s estimator θ was 0.00296 in this collection of rice germplasm. Tajima’s D test for selection showed no significant deviation from the neutral expectation (D = − 0.04612, P > 0.10). However, significant associations were found between seven of the SNPs and peak GT (T p) at P < 0.05, of which two contiguous SNPs (GC/TT) showed a very strong association with T p (P < 0.0001). With some rare exception, this GC/TT polymorphism alone can differentiate rice varieties with high or intermediate GT (possessing the GC allele) from those with low GT (possessing the TT allele). In contrast, none of these SNPs or InDel was significantly associated with amylose content. A further 509 rice varieties with known physicochemical properties (e.g., AAC and PT) and known alleles of other starch synthesizing genes were genotyped for the SSIIa GC/TT alleles. Association analysis indicated that 82% of the total variation of AAC in these samples could be explained by a (CT)n simple sequence repeat (SSR) and a G/T SNP of Waxy gene (Wx), and 62.4% of the total variation of PT could be explained by the GC/TT polymorphism. An additional association analysis was performed between these molecular markers and the thermal and retrogradation properties for a subset of 245 samples from the 509 rice varieties. The SSIIa GC/TT polymorphism explained more than 60% of the total variation in thermal properties, whereas the SSR and SNP of Wx gene explained as much as the SSIIa GC/TT of the total variation in retrogradation properties. Our study provides further support for the utilization of the GC/TT polymorphism in SSIIa. As shown in our study of 509 rice varieties, the GC/TT SNP could differentiate rice with high or intermediate GT from those with low GT in about 90% of cases. Using four primers in a single PCR reaction, the GC/TT polymorphism can be surveyed on a large scale. Thus, this SNP polymorphism can be very useful in marker-assisted selection for the improvement of GT and other physicochemical properties of rice.  相似文献   

13.
The pasting, viscoelastic, morphological and retrogradation properties of rice starch as affected by low acyl (LA) and high acyl (HA) gellan gums were studied. The additions of both LA and HA gums increased the peak and trough viscosities, while decreased the final and setback viscosities of rice starch paste. The starch-HA mixed pastes exhibited superior viscoelastic properties to the starch-LA pastes as evidenced by their higher storage modulus and lower loss tangent values. The starch-HA system exhibited higher resistance to the stress and more pronounced recovery rate in in-shear structural recovery test. The creep recovery data were well fitted by a 4-element Burger’s model. The shrinkage measurements showed that the addition of both hydrocolloids, especially the HA gellan gum retarded the retrogradation of rice starch gel during cold storage. It was concluded that the addition of LA and HA gellan gums modified the rheology and textural properties of rice starch gel in different ways and interacted under different mechanisms based on their molecular structures.  相似文献   

14.
Selection of excipients used is a critical step in the design of a pharmaceutical dosage form as it affects its behavior upon application, as during storage. The purpose of the present study is to evaluate and compare the behavior of six liposomal formulations intended for topical application composed of two widely used phospholipids 1,2-diacyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine with and without incorporation of cholesterol. Liposomal hydrogels made of hydroxyethylcellulose 3% and incorporating the anti-fungal agent terbinafine hydrochloride (E)-N-(6,6-dimethyl-2-hepten-4-inyl)-N-methyl-1-naphthalene-methanamine (-hydrochloride) were prepared, their viscosity was measured and in vitro drug release was studied. Moreover, physical stability and drug retention during storage at two different temperatures (2–8?°C and RT) were examined over time. The results showed differences in the behavior between the two phospholipids while incorporation of cholesterol at the studied concentrations was found to be of minor importance. Drug release was found to be favorable from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomal hydrogels and drug retention was found to be higher at lower storage temperature for all batches. Original physicochemical properties of all batches were found to be retained at least for a week.  相似文献   

15.
This study was conducted to test the hypothesis that spatial variations in soil microbial variables in a Thai rice paddy are accurately described by multivariate profiles of the soil bacterial communities. We found that community-level physiological profiles of soil bacterial communities could better describe the population density of Rhizoctonia solani in soil than the physicochemical profiles do. However, soil dehydrogenase levels were closely correlated with soil fertility (P<0.05), and these were better described by the physicochemical profiles. Hence, the hypothesis was rejected, and we suspect that soil microbial variables react differently to the same physicochemical changes. The average population density of R. solani (35 colony-forming units/g dry soil) was relatively high in the soil we studied, and the soil fertility was found to be among the poorest in Thailand. The soil quality was comparable to the most degraded bare ground soil in an adjacent bioreserve in terms of Shannon diversity index based on the communitylevel physiological profile as well as values of soil fertility indices. Overall, the soil microbial and physicochemical indicators showed that the paddy soil needs to be supplemented with soil nutrients. Otherwise, R. solani may cause a significant reduction in rice production.  相似文献   

16.
Physicochemical properties of storage starch largely determine rice grain quality and food characteristics. Therefore, modification of starch property is effective to fine‐tune cooked rice textures. To obtain new resources with modified starch property as breeding materials, we screened a mutant population of a japonica cultivar Nipponbare and found two independent mutant lines, altered gelatinization (age)1 and age2, with moderate changes in starch gelatinization property. A combination of conventional genetic analyses and the latest mapping method, MutMapPlus, revealed that both of these lines harbour novel independent mutant alleles of starch branching enzyme IIb (BEIIb) gene. In age1, amino acid substitution of Met‐723 to Lys completely abolished BEIIb enzyme activity without significant reduction in its protein level. A transposon insertion in an intron of BEIIb gene reduced BEIIb protein level and activity in age2. Production of a series of the mutant lines by combining age alleles and indica‐type starch synthase IIa allele established stepwise alteration of the physicochemical properties of starch including apparent amylose content, thermal property, digestibility by α‐amylase and branched structures of amylopectin. Consistent with the alteration of starch properties, the results of a sensory evaluation test demonstrated that warm cooked rice of the mutants showed a variety of textures without marked reduction in overall palatability. These results suggest that a series of the mutant lines are capable of manipulation of cooked rice textures.  相似文献   

17.
The aim of this study was to determine and compare differences in physical, chemical and sensory post‐mortem changes between wild (W) and farmed (F) gilthead sea bream (Sparus aurata). Ungutted fish were stored in ice from harvesting up to 20 days and freshness indicators were analyzed at regular intervals. Proximate composition of the samples differed in lipid (W = 0.86 ± 0.12; F = 4.18 ± 0.16) and moisture content (W = 79.12 ± 0.48; F = 74.50 ± 0.82). Data from sensory evaluation were described using linear regression models. Sensory schemes for cooked and raw fish were found to be suitable in establishing specific attribute deterioration and shelf life duration (W = 14 days; F = 17 days). Changes in pH and dielectric properties were influenced by differences in lipid content, while changes in total volatile base nitrogen and trimethylamine showed high correlation with sensory assessment and storage time, but stayed below the acceptance limit for human consumption (W : 24.47 mg TVB‐N/100 g and 4.14 mg TMA‐N/100 g; F : 26.18 mg TVB‐N/100 g and 3.84 mg TMA‐N/100 g), and thus were not reliable indicators of quality changes during storage in ice. Deterioration of flesh lipids, assessed by thiobarbituric acid index, differed between the samples, but presented no serious problem during storage time. In order to determine the importance of individual results, all obtained data were submitted to principal component analysis. Variations in sensory, physical and chemical assessment were described by PC1 (storage time); variations in lipid and moisture content were described by PC2 (capture grounds). A clear separation of the investigated samples, according to the storage time and capture grounds, was observed.  相似文献   

18.
Profiling the Expression of Genes Controlling Rice Grain Quality   总被引:8,自引:0,他引:8  
Rice provides a staple source of energy, protein and other nutrients to half of the world population. Over 90 of the rice seeds consists of starch and protein by dry weight. The quantity and property of starch and protein thus play a dominant role in the yield and quality of rice. The amylase content of starch is a determining factor in the eating and cooking quality while the amount and essential amino acids balance of storage proteins affect the nutritional quality of rice. In China, the super-hybrid rice currently under the last phase of development has a 35 yield advantage over the best inbred rice varieties. However, its grain quality needs further improvement. This study reported the expression patterns of 44 genes participating in starch, storage protein, and lysine synthesis in the developing rice grain. Field grown rice cultivar 9311, the paternal line of an elite super-hybrid rice LYP9with its draft genomic sequence released, was used as plant material. Results revealed diverse yet coordinated expression profiles of the genes involved in the three pathways which lead to the final composition and property of starch, protein and lysine that determine the quality of rice, providing useful information for rice quality improvement.  相似文献   

19.
20.
Lipid peroxidation plays a major role in seed longevity and viability. In rice grains, lipid peroxidation is catalyzed by the enzyme lipoxygenase 3 (LOX3). Previous reports showed that grain from the rice variety DawDam in which the LOX3 gene was deleted had less stale flavour after grain storage than normal rice. The molecular mechanism by which LOX3 expression is regulated during endosperm development remains unclear. In this study, we expressed a LOX3 antisense construct in transgenic rice (Oryza sativa L.) plants to down‐regulate LOX3 expression in rice endosperm. The transgenic plants exhibited a marked decrease in LOX mRNA levels, normal phenotypes and a normal life cycle. We showed that LOX3 activity and its ability to produce 9‐hydroperoxyoctadecadienoic acid (9‐HPOD) from linoleic acid were significantly lower in transgenic seeds than in wild‐type seeds by measuring the ultraviolet absorption of 9‐HPOD at 234 nm and by high‐performance liquid chromatography. The suppression of LOX3 expression in rice endosperm increased grain storability. The germination rate of TS‐91 (antisense LOX3 transgenic line) was much higher than the WT (29% higher after artificial ageing for 21 days, and 40% higher after natural ageing for 12 months). To our knowledge, this is the first report to demonstrate that decreased LOX3 expression can preserve rice grain quality during storage with no impact on grain yield, suggesting potential applications in agricultural production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号