首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high level production system for heterologous protein by cold culture of yeast transformants at 15°C was developed. The yeast transformants, carrying a plasmid containing cDNA for Aspergillus oryzae α-amylase (Taka-amylase A) or human lysozyme synthetic DNA, were cultivated in a selective medium for 1 or 2 days until full growth at 30°C. The yeast cells were harvested by centrifugation from the culture fluid and then were transferred to YPD medium. These inoculated broths were incubated for 2 days at 15°C and then for another 2 days at 30°C. By the cold culture method described above, higher amounts of Taka-amylase A (28.6 mg/liter) and human lysozyme (6.1 mg/liter) were produced by the yeast transformants compared to those by conventional methods.

Heterologous protein productions using YEp, YCp, and YIp types of yeast expression vectors with ADH1 or GAPDH promoter by the cold culture method showed effective productivity of about 2-fold compared to those by the conventional method of culture at 30°C. The high level production of heterologous protein by this method was not specific to the S. cerevisiae strains examined.  相似文献   

2.
Cell-surface engineering (Ueda et al., 2000) has been applied to develop a novel technique to visualize yeast in bread dough. Enhanced green fluorescent protein (EGFP) was bonded to the surface of yeast cells, and 0.5% EGFP yeasts were mixed into the dough samples at four different mixing stages. The samples were placed on a cryostat at ?30 °C and sliced at 10 μm. The sliced samples were observed at an excitation wavelength of 480 nm and a fluorescent wavelength of 520 nm. The results indicated that the combination of the EGFP-displayed yeasts, rapid freezing, and cryo-sectioning made it possible to visualize 2-D distribution of yeast in bread dough to the extent that the EGFP yeasts could be clearly distinguished from the auto-fluorescent background of bread dough.  相似文献   

3.
A number of substrates were tested for the cultivation of microorganisms to produce a host of enzymes. The effect of different substrates (wheat and rice straw, sugar cane waste, wood waste), incubation temperatures (20–40°C), initial pH levels (3.5–9.0), incubation periods (0–72 hours) and nitrogen sources (ammonium sulfate, urea, peptone, yeast extract, sodium nitrate) on growth and α-amylase activity was studied for the native and mutant strains. Maximum enzyme activity was observed at 1.5% wheat straw for Aspergillus niger FCBP-198 and An-Ch-4.7 and at 2% wheat straw for An-UV-5.6, with sodium nitrate as a principle nitrogen source. The optimum temperature for maximum enzyme activity was 30°C for the parental strain, while An-UV-5.6 and An-Ch-4.7 thrived well at 32.5°C. The best conditions of pH and incubation duration were 4.5 and 48 hours, respectively, for all the strains. Mass production under preoptimized growth conditions demonstrated the suitability of wheat straw for swift mycelial colonization and viability.  相似文献   

4.
Two cryophilic strains, YM-84 and YM-126, were selected by a double-layer agar fermenting technique from 100 strains of the wine yeast, Saccharomyces cerevisiae. The viability (specific growth rate) and fermentability of the two selected strains at low temperatures (7 and 13°C) were superior to those of wine yeast strains W3 and OC-2, indicating the usefulness of the two strains as cryophilic wine yeasts. Experiments using the two selected strains at intermediate temperatures (22 and 30°C) showed that their fermentation ceased prematurely and their ethanol yields were reduced.  相似文献   

5.
Selection of Yeasts for Breadmaking by the Frozen-Dough Method   总被引:6,自引:6,他引:0       下载免费PDF全文
Eleven yeast strains suitable for frozen dough were selected from over 300 Saccharomyces strains. All of these were identified as Saccharomyces cerevisiae from morphological, cultural, and physiological characteristics. The selected yeast cells accumulated a higher amount of trehalose than did commercial bakers' yeast cells.  相似文献   

6.
A galactooligosaccharide (GalOS)-producing yeast, OE-20 was selected from forty seven strains of yeast growing in Korean traditionalMeju (cooked soybean) and the yeast was tentatively identified asKluyveromyces maxianus varlactis by its morphology and fermentation profile. A maximum yield of 25.1%(w/w) GalOS, which corresponds to 25.1 g of GalOS per liter, was obtained from the reaction of 100 g per liter of lactose solution at 30°C, pH 7.0 for 18 h with an intracellular crude β-galactosidase. Glucose and galactose were found to inhibit GalOS formation. The GalOS that were purified by active carbon and celite 545 column chromatography were supplemented in MRS media and a stimulated growth was observed of some intestinal bacteria. In particular the growth rate ofBifidobacterium infantis in the GalOS containing MRS broth increased up to 12.5% compared to that of the MRS-glucose broth during a 48 h incubation period.  相似文献   

7.
Very efficient hydrogen producing photosynthetic bacteria, strains SL1, SL3, SL16 and TG28 newly isolated in Korea, and strain KM113 newly isolated in the Sendai area, were found to be Rhodopseudomonas spp. To examine the stability of cell suspensions of the cultures for hydrogen production, which is closely associated with light absorption, we conducted larger scale cultures under periodic illumination (12-hr intervals) without stirring at 30°C using strains SL1 and Rhodopseudomonas sphaeroides B5, the latter was isolated in the Bangkok area. Both strains gave homogeneous cell suspensions throughout the incubation period and larger amounts of hydrogen were produced in a shorter period of time by both cultures than obtained with Rhodopseudomonas sp. TN3, an isolate from the Sendai area which was reported previously. With the cells of the new isolates and strains TN3 and B5 grown on glutamate-malate medium at 30°C, we measured hydrogen production at 20, 30 and 40°C in the same medium. Among them, strains SL1, SL16 and KM113 showed the highest hydrogen production activity at 30°C. The maximum hydrogen production rates with these strains were over 130 µ1/hr/mg dry cells, but at 40°C, the highest activity (138 µl/hr/mg dry cells) was obtained with strain B5. Since strain B5 also showed good activities at 20 and 30°C, we suggest that this strain might be suitable for hydrogen production in outdoor cultures.  相似文献   

8.
API 50 CH fermentation profiles of 45 Lactobacillus, one Atopobium, and three Weissella strains incubated at 30°C and 37°C were evaluated. Atopobium uli and ten species of Lactobacillus showed stable patterns despite the change in temperature. The rest of the type strains showed discrepancy between the two incubation temperatures: 18 strains lost, 12 additionally fermented another sugar, and 7 others fermented a different one in lieu. The variation was maximum in L. delbrueckii subsp. delbrueckii. L. malefermentans failed to ferment any of the substrates at 37°C. Majority of the food and plant-associated strains (mainly heterofermenters) retained distinctive traits at 30°C, while most of the animal-associated strains (mostly homofermenters) did so at 37°C. No general trend was observed; 30°C appeared to promote heterofermentation, while 37°C favored homofermenters. Use of API 50 CH profiles for taxonomic purpose in most lactobacilli appears reproducible if a specific temperature for a species is strictly followed. Received: 10 December 1999 / Accepted: 10 January 2000  相似文献   

9.
Summary The screening of twenty yeast strains for ethanol productivity at high osmotic pressure at temperatures ranging from 32°C to 45°C is described. Shake flask fermentations of 30°, 40°, and 50° Bx cane molasses were performed. The effect of temperature on productivity at a non-inhibitory ethanol level is weakly pronounced. Most strains fermented poorly at 50° Bx molasses but two Schizosaccharomyces pombe and one commercial baker's yeast, Saccharomyces cerevisiae performed well at all concentrations of molasses. In an extended study with Schizosaccharomyces pombe (CBS 352) and Saccharomyces cerevisiae (SJAB, fresh yeast), simulating a continuous run it was shown that Schizosaccharomyces pombe was less sensitive to high DS than Saccharomyces cerevisiae. At 25% DS the productivity of Schizosaccharomyces pombe is almost twice that of Saccharomyces cerevisiae.  相似文献   

10.
About 500 strains of dextranase producing microorganisms were examined in detail for pH- activity and enzyme stability. A gram positive bacterium identified as belonging to the genus Brevibacterium was found to produce alkaline dextranase. Maximal dextranase synthesis was obtained when grown aerobically at 26°C for 3 days in a medium containing 1 % dextran, 2% ethanol, 1 % polypeptone and 0.05 % yeast extract together with trace amounts of inorganic salts.

Brevibacterium dextranase had an optimum pH of 8.0 for activity at 37°C and an optimal temperature at 53°C at pH 7.5. The enzyme was quite stable over the range of pH 5.0 to 10.5 on 24 hr incubation at 37°C, especially on alkaline pH. The enzyme was also heat stable at 60°C for 10 min.  相似文献   

11.
CRISPR/Cas-based (clustered regularly interspaced short palindromic repeats/CRISPR-associated) screening has been proved to be an efficient method to study functional genomics from yeast to human. In this study, we report the development of a focused CRISPR/Cas-based gene activation library in Saccharomyces cerevisiae and its application in gene identification based on functional screening towards improved thermotolerance. The gene activation library was subjected to screening at 42°C, and the same library cultured at 30°C was set as a control group. After five successive subcultures, five clones were randomly picked from the libraries cultured at 30 and 42°C, respectively. The five clones selected at 30°C contain the specificity sequences of five different single guide RNAs, whereas all the five clones selected at 42°C contain the specificity sequence of one sgRNA that targets the promoter region of OLE1. A crucial role of OLE1 in thermotolerance was identified: the overexpression of OLE1 increased fatty acid unsaturation, and thereby helped counter lipid peroxidation caused by heat stress, rendering the yeast thermotolerant. This study described the application of CRISPR/Cas-based gene activation screening with an example of thermotolerant yeast screening, demonstrating that this method can be used to identify functional genes in yeast.  相似文献   

12.
We studied the utilization of protein-hydrolyzed sweet cheese whey as a medium for the production of β-galactosidase by the yeasts Kluyveromyces marxianus CBS 712 and CBS 6556. The conditions for growth were determined in shake cultures. The best growth occurred at pH 5.5 and 37°C. Strain CBS 6556 grew in cheese whey in natura, while strain CBS 712 needed cheese whey supplemented with yeast extract. Each yeast was grown in a bioreactor under these conditions. The strains produced equivalent amounts of β-galactosidase. To optimize the process, strain CBS 6556 was grown in concentrated cheese whey, resulting in a higher β-galactosidase production. The β-galactosidase produced by strain CBS 6556 produced maximum activity at 37°C, and had low stability at room temperature (30°C) as well as at a storage temperature of 4°C. At −4°C and −18°C, the enzyme maintained its activity for over 9 weeks. Received 20 January 1999/ Accepted in revised form 30 April 1999  相似文献   

13.
Strains of Saccharomyces cerevisiae and Torulaspora delbrueckii isolated from traditional bread doughs displayed dough-raising capacities similar to the ones found in baker's yeasts. During storage of frozen doughs, strains of T. delbrueckii (IGC 5321, IGC 5323, and IGC 4478) presented approximately the same leavening ability for 30 days. Cell viability was not significantly affected by freezing, but when the dough was submitted to a bulk fermentation before being stored at -20 degrees C, there was a decrease in the survival ratio which depended on the yeast strain. Furthermore, the leavening ability after 4 days of storage decreased as the prefermentation period of the dough before freezing increased, except for strains IGC 5321 and IGC 5323. These two strains retained their fermentative activity after 15 days of storage and 2.5 h of prefermentation, despite showing a reduction of viable cells under the same conditions. The intracellular trehalose content was higher than 20% (wt/wt) in four of the yeasts tested: the two commercial strains of baker's yeast (S. cerevisiae IGC 5325 and IGC 5326) and the two mentioned strains of T. delbrueckii (IGC 5321 and IGC 5323). However, the strains of S. cerevisiae were clearly more susceptible to freezing damages, indicating that other factors may contribute to the freeze tolerance of these yeasts.  相似文献   

14.
Ten strains of non-sulfur purple photosynthetic bacteria were isolated from soil and water samples gathered in Bangkok and its surrounding area. The isolated strains from Thailand were divided into two groups, Al to A4 and BI to B6. They were identified as Rhodopseudomonas gelatinosa and Rhodopseudomonas sphaeroides, respectively. All strains grew well either at 30°C or 40°C, but failed to grow at 45°C. Strains belonging to group A had weak activities of nitrogenase (acetylene reduction) and hydrogen production, while strains of group B showed much higher activities than group A. The activities of nitrogenase and hydrogen production of isolates in Thailand were compared with those of isolates in Japan. The activities of isolated strains in Thailand at 40°C were almost equal to those at 30°C or even higher. On the other hand, both hydrogen production and the nitrogenase activity of isolates in Japan decreased significantly at 40°C as compared to the activities at 30°C. These results suggest an intrinsic thermostability in hydrogen production by the non-sulfur purple photosynthetic bacteria of Thailand. Among isolated strains in Thailand, strain B5 was the most active in nitrogenase and hydrogen production, and its activity was significantly higher than strain TN3 at 40°C. TN3 had been selected as the most active strain among isolates in the Sendai area.  相似文献   

15.
Phytase-active yeasts from grain-based food and beer   总被引:1,自引:0,他引:1  
Aims: To screen yeast strains isolated from grain‐based food and beer for phytase activity to identify high phytase‐active strains. Methods and Results: The screening of phytase‐positive strains was carried out at conditions optimal for leavening of bread dough (pH 5·5 and 30°C), in order to identify strains that could be used for the baking industry. Two growth‐based tests were used for the initial testing of phytase‐active strains. Tested strains belonged to six species: Saccharomyces cerevisiae, Saccharomyces pastorianus, Saccharomyces bayanus, Kazachstania exigua (former name Saccharomyces exiguus), Candida krusei (teleomorph Issachenkia orientalis) and Arxula adeninivorans. On the basis of initial testing results, 14 strains were selected for the further determination of extracellular and intracellular (cytoplasmic and/or cell‐wall bound) phytase activities. The most prominent strains for extracellular phytase production were found to be S. pastorianus KVL008 (a lager beer strain), followed by S. cerevisiae KVL015 (an ale beer strain) and C. krusei P2 (isolated from sorghum beer). Intracellular phytase activities were relatively low in all tested strains. Conclusions: Herein, for the first time, beer‐related strains of S. pastorianus and S. cerevisiae are reported as phytase‐positive strains. Significance and Impact of the Study: The high level of extracellular phytase activity by the strains mentioned previously suggests them to be strains for the production of wholemeal bread with high content of bioavailable minerals.  相似文献   

16.
The effects of temperature, water activity (aw), incubation time, and their combinations on radial growth and ochratoxin A (OTA) production of/by eight Aspergillus niger aggregate strains (six A. tubingensis and two A. niger) and four A. carbonarius isolated from Moroccan grapes were studied. Optimal conditions for the growth of most studied strains were shown to be at 25°C and 0.95 aw. No growth was observed at 10°C regardless of the water activity and isolates. The optimal temperature for OTA production was in the range of 25°C∼30°C for A. carbonarius and 30°C∼37°C for A. niger aggregate. The optimal aw for toxin production was 0.95∼0.99 for A. carbonarius and 0.90∼0.95 for A. niger aggregate. Mean OTA concentration produced by all the isolates of A. niger aggregate tested at all sampling times shows that maximum amount of OTA (0.24 μg/g) was produced at 37°C and 0.90 aw. However, for A. carbonarius, mean maximum amounts of OTA (0.22 μg/g) were observed at 25°C and 0.99 aw. Analysis of variance showed that the effects of all single factors (aw, isolate, temperature and incubation time) and their interactions on growth and OTA production were highly significant.  相似文献   

17.
Eggs of two small Australian lizards, Lampropholis guichenoti and Bassiana duperreyi, were incubated to hatching at 25 °C and 30 °C. Incubation periods were significantly longer at 25 °C in both species, and temperature had a greater effect on the incubation period of B. duperreyi (41.0 days at 25 °C; 23.1 days at 30 °C) than L. guichenoti (40.1 days at 25 °C; 27.7 days at 30 °C). Patterns of oxygen consumption were similar in both species at both temperatures, being sigmoidal in shape with a fall in the rate of oxygen consumption just prior to hatching. The higher incubation temperature resulted in higher peak and higher pre-hatch rates of oxygen consumption in both species. Total amount of oxygen consumed during incubation was independent of temperature in B. duperreyi, in which approximately 50 ml oxygen was consumed at both temperatures, but eggs of L. guichenoti incubated at 30 °C consumed significantly more (32.6 ml) than eggs incubated at 25 °C (28.5 ml). Hatchling mass was unaffected by either incubation temperature or the amount of water absorbed by eggs during incubation in both species. The energetic production cost of hatchling B. duperreyi (3.52 kJ · g−1) was independent of incubation temperature, whereas in L. guichenoti the production cost was greater at 30 °C (4.00 kJ · g−1) than at 25 °C (3.47 kJ · g−1). Snout-vent lengths and mass of hatchlings were unaffected by incubation temperature in both species, but hatchling B. duperreyi incubated at 30 °C had longer tails (29.3 mm) than those from eggs incubated at 25 °C (26.2 mm). These results indicate that incubation temperature can affect the quality of hatchling lizards in terms of embryonic energy consumption and hatchling morphology. Accepted: 27 January 2000  相似文献   

18.
Aspergillus carbonarius is known to colonize and produce ochratoxin A (OTA) on grapes and its derived products which is harmful to humans. We screened and tested A. carbonarius strains which isolated from grapes for production of OTA and selected three high OTA producing strains (ACSP1, ACSP2, ACSP3) for this study. These strains were further tested for their ability to produce OTA at different ecological factors [temperature 15, 25, 30, 35°C; water activity (aw) 0.98, 0.95, 0.90, 0.88; and pH 4.0, 7.0, 9.0, 10.0]. Out of the three strains tested, A. carbonarius ACSP3 produced high levels of OTA than ACSP2 and ACSP1 in all the ecological factors. At 30°C A. carbonarius strains produced the highest OTA compared with other temperature regimes. With reference to water activity, aw 0.98 favoured mycelial growth and accumulation of more OTA with all the three A. carbonarius strains. Further, pH 4.0 was encouraged the greatest production of OTA in all the strains. No growth was observed at aw 0.88 and pH 10.0 in all the three strains except the strain ACSP3 at high pH. Our work demonstrated that temperature 30°C, aw 0.98 and pH 4.0 is optimum for growth and production of OTA by A. carbonarius strains. Maximum amounts of OTA were found at earlier growth stages (7–9 days of incubation) in all the strains of A. carbonarius. The present study revealed that different ecological factors had great impact on OTA production by A. carbonarius which is useful for understanding OTA contamination and to develop proper management practices in future research programmes.  相似文献   

19.
A total of 65 yeast strains were screened for their ability to grow and ferment lactose in a standard DURHAM tube test at 30 °C. Based on the kinetic parameters for lactose and whey lactose fermentations in shake flask cultures, the strain Candida psedotropicalis 65 was chosen for further studies. Some of the cultural parameters affecting ethanolic fermentations on lactose were standardized. At an initial lactose concentration of 100–120 g/l in the medium containing concentrated whey or lactose, at 40 °C and within 48 h, the selected strain reached an ethanol concentration of 41–59 g/l, an ethanol productivity of 1.3–3.0 g/l/h, a lactose consumption of 99%, an ethanol yield 0.4–0.49 g/g and a biomass yield of 0.027 g/g.  相似文献   

20.
Aims: To determine the effects of water activity (aW; 0·995–0·90), temperature (5, 18, 25 and 30°C), time of incubation (7–35 days) and their interactions on tenuazonic acid (TA) production on 2% soybean‐based agar by two Alternaria alternata strains isolated from soybean in Argentina. Methods and Results: TA production by two isolates of A. alternata was examined under interacting conditions of aW, temperature and time of incubation on 2% soybean‐based agar. Maximum TA production was obtained for both strains at 0·98 aW, but at 30 and 25°C for the strains for RC 21and RC 39, respectively. The toxin concentration varied considerably depending on aW, temperature, incubation time and strain interactions. TA was produced over the temperature range from 5 to 30°C and aW range from 0·92 to 0·995, however at 5 and 18°C little TA was produced at aW below 0·94. Contour maps were developed from these data to identify areas where conditions indicate a significant risk for TA accumulation. Conclusions: The optimum and marginal conditions for TA production by A. alternata on soybean‐based agar were identified. The results indicated that TA production by A. alternata is favoured by different temperatures in different strains. Significance and Impact of the Study: Data obtained provide very useful information for predicting the possible risk factors for TA contamination of soybean as the aW and temperature range used in this study simulate those occurring during grain ripening. The knowledge of TA production under marginal or sub‐optimal temperature and aW conditions for growth are relevant as improper storage conditions accompanied by elevated temperature and moisture content in the grain can favour further mycotoxin production and lead to reduction in grain quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号