首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of two particulate enzymes, gluconate dehydrogenase (GDH) and 2-ketogluconate dehydrogenase (2KGDH), was investigated with cell free extract through 26 strains of genus Acetobacter and genus Gluconobacter. GDH activity was found in the cell free extracts from all strains of genus Gluconobacter and two species of genus Acetobacter, A. aceti and A. aurantium. High activity of 2KGDH was also found in the pigment-producing strains of genus Gluconobacter.

Best solubilization of particulate enzymes was attained with the highest recovery when 10 mg of Triton X–100 and 30 mg of protein of particulate fractions in 1 ml of 0.01 m phosphate buffer, pH 6.0, are incubated for 9 hr at 5°C with continuous stirring.

By comparison of the total enzyme activity of particulate enzymes with that of NAD(P)-linked enzymes in the cell free extract, it was obvious that the formation of ketogluconates by particulate enzymes was much more predominant, roughly over 100 times higher, as that of NAD(P)-linked enzymes.  相似文献   

2.
The nitrogen requirements of 96Gluconobacter, 55Acetobacter and 7Frateuria strains were examined. Only someFrateuria strains were able to grow on 0.5% yeast extract broth or 0.5% peptone broth. In the presence ofd-glucose ord-mannitol as a carbon source, ammonium was used as the sole source of nitrogen by all three genera. With ethanol, only a fewAcetobacter strains grew on ammonium as a sole nitrogen source. Singlel-amino acids cannot serve as a sole source of carbon and nitrogen for growth ofGluconobacter, Acetobacter orFrateuria. The singlel-amino acids which were used by most strains as a sole nitrogen source for growth are: asparagine, aspartic acid, glutamine, glutamic acid, proline and alanine. SomeAcetobacter andGluconobacter strains deaminated alanine, asparagine, glutamic acid, threonine, serine and proline. NoFrateuria strain was able to develop on cysteine, glycine, threonine or tryptophan as a sole source of nitrogen for growth. An inhibitory effect of valine may explain the absence of growth on this amino acid. No amino acid is “essential” forGluconobacter, Acetobacter orFrateuria.  相似文献   

3.
A general review of the acetic acid bacteria belonging to the intermediate type was accomplished physiologically, biochemically and morphologically. Conclusively, it was clarified that these were clearly a specific group and different from both Acetobacter and Gluconobacter, These were intermediate between lactaphilic and glycophilic, besides, on the carbohydrate oxidizability, these were intermediate between Acetobacter and Gluconobacter as mentioned previously.1) These showed the same result as Acetobacter on the vitamin requirement for the growth, but were closely related to Gluconobacter on the carbohydrate availability. And on the oxidative activity for amino acid, accompanying the deamination, these were also clearly distinguished from both Acetobacter and Gluconobacter, particularly these oxidized strongly l-serine. Differing from the observations by other investigators, these showed single flagellation, with the exception of multi-polar, but never multi-peritrichous.  相似文献   

4.
A bacteriophage ofAcetobacter suboxydans was isolated and found to correspond to type A phage according to Bradley's classification. The phage contains double stranded DNA. The length of the latency period and burst size could not be precisely determined because of apparent non-synchronous release of phage from single infective cycles. The host range was determined using 24 strains ofAcetobacter andGluconobacter species. Evidence for a probable occurence of host determined restriction and modification was obtained withAcetobacter suboxydans strain ATCC 621. The phage is designated A-1 and it is the first one to be reported forAcetobacter.Abbreviations pfu plaque forming units - PTA phosphotungstic acid - GC guanarine + cytosine  相似文献   

5.
A shuttle vector pGE1 (11.9 kb) which can replicate both in Gluconobacter oxydans and Escherichia coli was constructed from the cryptic Gluconobacter plasmid pGO3293S (9.9 kb, relaxed type) and E. coli plasmid pSUP301 (5 kb, Kmr, Apr, relaxed type). The plasmid pGO3293S is one of the endogenous plasmids of G. oxydans IFO 3293 which converts l-sorbose to 2-keto-l-gulonic acid (2KGA), an intermediate of vitamin C synthesis. The other plasmid, pSUP301, is a conjugative plasmid which contains pACYC177 and the mob region from plasmid RP4. The plasmid pGE1 could be transferred into G. oxydans IFO 3293 with a high frequency (10−1 transconjugants/recipient) by a conjugal transfer system, and maintained very stably without antibiotic selection. pGE1 can be introduced and maintained in other acetic acid bacteria including Gluconobacter and Acetobacter. The presence of pGE1 did not inhibit the growth or 2KGA productivity of 2KGA-producing strains derived from G. oxydans IFO 3293. The usefulness of pGE1 as a vector was confirmed by subcloning the membrane-bound l-sorbosone dehydrogenase gene of A. liquefaciens IFO 12258 in G. oxydans IFO 3293 derivatives; in this subcloning, pGE1 could be further shortened to the 9.8 kb plasmid, pGE2.  相似文献   

6.
Fifty-sixGluconobacter strains and oneAcetobacter strain were isolated from honey bees and their environment in three different regions in Belgium and identified phenotypically. Polyacrylamide gel electrophoresis of the soluble cell proteins showed that two different types exist within theGluconobacter isolates: strains from type A were found in samples of the three regions, whereas strains from type B were only isolated in two of the three regions. Both types could occur in bees from the same region, from several hives of one bee keeper and from one hive. Strains from type A were almost identical with collection strainG. oxydans subsp.suboxydans NCIB 9018, whereas strains from type B consituted a new protein electrophoretic type within the genusGluconobacter. AlthoughGluconobacter is apparently associated with honey bees, it is not known whether it is important or required for the bees or any hive product.  相似文献   

7.
8.
Summary Electron-micrographs ofGluconobacter melanogenus strain AC 8 (formerlyG. liquefaciens), andG. melanogenus strain U 4, have conclusively confirmed the findings ofShimwell andCarr (1959),Stouthamer (1960), andLeifson (private communication), that these strains are not polarly flagellatedAcetomonas orGluconobacter strains, but peritrichously flagellated acetate-oxidisingAcetobacter ones. When transferred to the latter genus all evidence that these two genera are derived from a “common pool of ancestors”, as claimed byDe Ley (1961), disappears.  相似文献   

9.
Crystalline 2-ketogluconate reductase in genus Acetobacter was prepared from cell free extract of Acetobacter ascendens. Crystalline enzyme was purified 13,000-fold with a yield of 15%. Affinity chromatography on blue-dextran Sepharose 4B column successfully purified the enzyme. The enzyme was composed of three identical subunits with a molecular weight of 40,000. Substrate specificity of 2-ketogluconate reductase from two genera of acetic acid bacteria was compared using highly purified enzyme preparations, and it was confirmed that gluconate oxidation activity of the enzyme was intrinsically weak or absent in genus Acetobacter and intense in Gluconobacter. This fact must be a useful criterion for classification of acetic acid bacteria.  相似文献   

10.
Summary The oxidation of Ca–Mg lactate to Ca–Mg acetate (CMA) deicing salt was studied in pure cultures ofAcetobacter pasteurianus, Gluconobacter cerinus orG. oxydans. Gluconobacter sp., which maintained a practically self-controlled pH reaction and did not overoxidize acetate, appear to be potentially important for CMA production.  相似文献   

11.
Bacteria belonging to the genus Acetobacter and Gluconobacter, and enzymes isolated from them, have been extensively used for biosensor construction in the last decade. Bacteria used as a biocatalyst are easy to prepare and use in amperometric biosensors. They contain multiple enzyme activities otherwise not available commercially. The range of compounds analyzable by Gluconobacter biosensors includes: mono- and poly-alcohols, multiple aldoses and ketoses, several disaccharides, triacylglycerols, and complex parameters like utilizable saccharides or biological O2 demand. Here, the recent trends in Gluconobacter biosensors and current practical applications are summarized. An erratum to this article can be found at  相似文献   

12.
Summary Buffering capacities and membrane conductance to H+ were measure inAcetobacter aceti ATCC 15973 andGluconobacter oxydans ATCC 621 by a pulse technique. In both strains the buffering capacity of intact cells was a significant proportion of the total buffering capacity, but the magnitude of the buffering capacity varied between one species and another. Over the pH range studied, 4.02 to 8.15,Gluconobacter oxydans, which oxidizes sugars and alcohols to acids and accumulates them, showed lower values of buffering capacities and membrane conductance to protons thanAcetobacter aceti, which oxidizes these substrates completely to CO2 and H2O.  相似文献   

13.
Bacteria which cause pink disease of pineapple, identified on the basis of their nutritional and biochemical activities, were found to belong to three genera. These bacteria include the following species: Gluconobacter oxydans, Acetobacter aceti, and Erwinia herbicola. Several pink disease strains required one to three vitamins for growth. Both G. oxydans strains 303D and 180 required biotin, nicotinic acid, and pantothenic acid for growth; E. herbicola 189 required only nicotinic acid; however, A. aceti 295 was able to grow without any added supplements in glucose mineral salts medium. Optimal vitamin concentrations for maximal growth and optimal pH for the maximal number of generations per hour was established for a few pink disease strains.Journal Series Paper No. 2373 of the Hawaii Agricultural Experiment Station, Honolulu.  相似文献   

14.
A procedure, preparing spheroplast of acetic acid bacteria, was established to elucidate the membrane structure of the organisms. Of the acetic acid bacteria, only Acetobacter aceti cells were converted into spheroplasts by the sucrose-EDTA-lysozyme system. To Gluconobacter suboxydans, a method exchanging sucrose in the system for NaCl was indispensable. This NaCl-EDTA-lysozyme system was adequate for almost all acetic acid bacteria, which were converted efficiently into spheroplasts. The existence of EDTA was not essential to the genus Gluconobacter.  相似文献   

15.
Lactobionic acid was produced by acetic acid bacteria to oxidize lactose. Gluconobacter spp. and Gluconacetobacter spp. showed higher lactose-oxidizing activities than Acetobacter spp. Gluconobacter frateurii NBRC3285 produced the highest amount of lactobionic acid per cell, among the strains tested. This bacterium assimilated neither lactose nor lactobionic acid. At high lactose concentration (30%), resting cells of the bacterium showed sufficient oxidizing activity for efficient production of lactobionic acid. These properties may contribute to industrial production of lactobionic acid by the bacterium. The bacterium showed higher oxidizing activity on cellobiose than that on lactose and produced cellobionic acid.  相似文献   

16.
Summary Six strains of acetic acid bacteria were evaluated with respect to their capability to catalyze the stereoselective reduction of ketones. The cells were permeabilized before the bioconversions. The best strains wereGluconobacter oxydans DSM 50049 andAcetobacter aceti DSM 2002. Using either of these two strains it was possible to reduce all 12 ketones to (S)-alcohols with an enantiomeric excess of 94 %. The highest level of enzymatic activity was found inAcetobacter aceti DSM 2002.  相似文献   

17.
In order to clarify the phylogenetic relationships of the species classified in the genus Kluyveromyces (Saccharomycetaceae), three partial base sequences of 18S and 26S rRNAs of eighteen strains were determined. The regions determined of the strains corresponded to positions 1451 through 1618 (168 bases) of 18S rRNA and to positions 1611 through 1835 (225 bases) and 493 through 622 (130 bases) of a strain (IFO 2376) of Saccharomyces cerevisiae. The analyses of the partial base sequences suggested that the genus Kluyveromyces is phylogenetically heterogeneous, ranging from the strains that are quite close to the strain of S. cerevisiae to the strains that are distinct enough to be classified in genera separate from the genus Saccharomyces. From our sequence data, we concluded that the extent of the genus Kluyveromyces should be restricted to only one species, K. polysporus, the type species of the genus. Kluyveromyces phaffii was also distinct enough to deserve another genus. Kluyveromyces cellobiovorus was not close to any of the strains of Kluyveromyces species examined, and should be excluded from the genus. Most of the strains of the species examined were fairly close to the strain of S. cerevisiae.  相似文献   

18.
Two bacterial strains causing pink-disease of pineapple were identified as Acetobacter liquefaciens and compared with 8 other Acetobacter liquefaciens, 10 Gluconobacter oxydans and 7 Frateuria aurantia strains. The similarieties and differences between these bacteria are discussed.  相似文献   

19.

Aim

To investigate physicochemical characteristics and especially genotypic diversity of the main culturable micro‐organisms involved in fermentation of sap from Borassus akeassii, a newly identified palm tree from West Africa.

Methods and Results

Physicochemical characterization was performed using conventional methods. Identification of micro‐organisms included phenotyping and sequencing of: 26S rRNA gene for yeasts, 16S rRNA and gyrB genes for lactic acid bacteria (LAB) and acetic acid bacteria (AAB). Interspecies and intraspecies genotypic diversities of the micro‐organisms were screened respectively by amplification of the ITS1‐5.8S rDNA‐ITS2/16S‐23S rDNA ITS regions and repetitive sequence‐based PCR (rep‐PCR). The physicochemical characteristics of samples were: pH: 3·48–4·12, titratable acidity: 1·67–3·50 mg KOH g?1, acetic acid: 0·16–0·37%, alcohol content: 0·30–2·73%, sugars (degrees Brix): 2·70–8·50. Yeast included mainly Saccharomyces cerevisiae and species of the genera Arthroascus, Issatchenkia, Candida, Trichosporon, Hanseniaspora, Kodamaea, Schizosaccharomyces, Trigonopsis and Galactomyces. Lactobacillus plantarum was the predominant LAB species. Three other species of Lactobacillus were also identified as well as isolates of Leuconostoc mesenteroides, Fructobacillus durionis and Streptococcus mitis. Acetic acid bacteria included nine species of the genus Acetobacter with Acetobacter indonesiensis as predominant species. In addition, isolates of Gluconobacter oxydans and Gluconacetobacter saccharivorans were also identified. Intraspecies diversity was observed for some species of micro‐organisms including four genotypes for Acet. indonesiensis, three for Candida tropicalis and Lactobacillus fermentum and two each for S. cerevisiae, Trichosporon asahii, Candida pararugosa and Acetobacter tropicalis.

Conclusion

fermentation of palm sap from B. akeassii involved multi‐yeast‐LAB‐AAB cultures at genus, species and intraspecies level.

Significance and Impact of the Study

First study describing microbiological and physicochemical characteristics of palm wine from B. akeassii. Genotypic diversity of palm wine LAB and AAB not reported before is demonstrated and this constitutes valuable information for better understanding of the fermentation which can be used to improve the product quality and develop added value by‐products.  相似文献   

20.
An efficient transformation protocol for Gluconobacter oxydans and Acetobacter liquefaciens strains was developed by preparation of electrocompetent cells grown on yeast extract-ethanol medium. Plasmid pBBR122 was used as broad-host-range vector to clone the Escherichia coli lacZY genes in G. oxydans and A. liquefaciens. Although both lac genes were functionally expressed in both acetic acid bacteria, only a few transformants were able to grow on lactose. However, this ability strictly depended on the presence of a plasmid expressing both lac genes. Mutations in the plasmids and/or in the chromosome were excluded as the cause of growth ability on lactose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号