首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Cell-free extracts of petioles of Arctium lappa catalyzed enantioselective formation of (+)-secoisolariciresinol [about 20% enantiomer excess (e.e.)] from achiral coniferyl alcohol in the presence of NADPH and H2O2. This is the first report of an enzymatic reaction to afford (+)-secoisolariciresinol enantioselectively.  相似文献   

2.
1. Etiolated seedlings of alfalfa and cucumber evolved n-hexanal from linoleic acid and cis-3-hexenal and trans-2-hexenal from linolenic acid when they were homogenized.

2. The activities for n-hexanal formation from linoleic acid, lipoxygenase and hydro-peroxide lyase were maximum in dry seeds and 1~2 day-old etiolated seedlings of alfalfa, and in 6~7 day-old etiolated seedlings of cucumber.

3. n-Hexanal was produced from linoleic acid and 13-hydroperoxylinoleic acid by the crude extracts of etiolated alfalfa and cucumber seedlings. cis-3-Hexenal and trans-2-hexenal were produced from linolenic acid and 13-hydroperoxylinolenic acid by the crude extracts of etiolated alfalfa and cucumber seedlings. But these extracts, particulariy cucumber one, showed a high isomerizing activity from cis-3-hexenal to trans-2-hexenal.

4. When the C8-aldehydes were produced from linoleic acid and linolenic acid by the crude extracts, formation of hydroperoxides of these C18-fatty acids was observed.

5. When 9-hydroperoxylinoleic acid was used as a substrate, trans-2-nonenal was produced by the cucumber homogenate but not by the alfalfa homogenate.

6. As the enzymes concerned with C6-aldehyde formation, lipoxygenase was partially purified from alfalfa and cucumber seedlings and hydroperoxide lyase, from cucumber seedlings. Lipoxygenase was found in a soluble fraction, but hydroperoxide lyase was in a membrane bound form. Alfalfa lipoxygenase catalyzed formation of 9- and 13-hydroperoxylinoleic acid (35: 65) from linoleic acid and cucumber one, mainly 13-hydroperoxylinoleic acid formation. Alfalfa hydroperoxide lyase catalyzed n-hexanal formation from 13-hydroperoxylinoleic acid, but cucumber one catalyzed formation of n-hexanal and trans-2-nonenal from 13- and 9-hydroperoxylinoleic acid, respectively.

7. From the above results, the biosynthetic pathway for C6-aldehyde formation in etiolated alfalfa and cucumber seedlings is established that C6-aldehydes (n-hexanal, cis-3-hexenal and trans-2-hexenal) are produced from linoleic acid and linolenic acid via their 13-hydroperoxides by lipoxygenase and hydroperoxide lyase.  相似文献   

3.
In vivo labeling experiments of Forsythia intermedia plant tissue with [8-14C]- and [9,9-2H2,OC2H3]coniferyl alcohols revealed that the lignans, (-)-secoisolariciresinol and (-)-matairesinol, were derived from two coniferyl alcohol molecules; no evidence for the formation of the corresponding (+)-enantiomers was found. Administration of (+-)-[Ar-3H]secoisolariciresinols to excised shoots of F. intermedia resulted in a significant conversion into (-)-matairesinol; again, the (+)-antipode was not detected. Experiments using cell-free extracts of F. intermedia confirmed and extended these findings. In the presence of NAD(P)H and H2O2, the cell-free extracts catalyzed the formation of (-)-secoisolariciresinol, with either [8-14C]- or [9,9-2H2,OC2H3]coniferyl alcohols as substrates. The (+)-enantiomer was not formed. Finally, when either (-)-[Ar-3H] or (+-)-[Ar-2H]secoisolariciresinols were used as substrates, in the presence of NAD(P), only (-)- and not (+)-matairesinol formation occurred. The other antipode, (+)-secoisolariciresinol, did not serve as a substrate for the formation of either (+)- or (-)-matairesinol. Thus, in F. intermedia, the formation of the lignan, (-)-secoisolariciresinol, occurs under strict stereochemical control, in a reaction or reactions requiring NAD(P)H and H2O2 as cofactors. This stereoselectivity is retained in the subsequent conversion into (-)-matairesinol, since (+)-secoisolariciresinol is not a substrate. These are the first two enzymes to be discovered in lignan formation.  相似文献   

4.
Cell extracts (100,000×g) of acetate grown Methanosarcina barkeri (strain MS) catalyzed CH4 and CO2 formation from acetyl-CoA with specific activities of 50 nmol·min-1·mg protein-1. CH4 formation was found to be dependent on tetrahydromethanopterin (H4MPT) (apparent K M=4 μM), coenzyme M (H-S-CoM), and 7-mercaptoheptanoylthreonine phosphate (H-S-HTP=component B) rather than on methanofuran (MFR) and coenzyme F420 (F420). Methyl-H4MPT was identified as an intermediate. This compound accumulated when H-S-CoM and H-S-HTP were omitted from the assays. These and previous results indicate that methanogenesis from acetate proceeds via acetyl phosphate, acetyl-CoA, methyl-H4MPT, and CH3-S-CoM as intermediates. The disproportionation of formaldehyde to CO2 and CH4 was also studied. This reaction was shown to be dependent on H4MPT, MFR, F420, H-S-CoM, and H-S-HTP.  相似文献   

5.
Stereochemical diversity in lignan biosynthesis of Arctium lappa L   总被引:2,自引:0,他引:2  
The stereochemistry of lignan biosynthesis in Arctium lappa L. is regulated organ-specifically. (+)-Secoisolariciresinol [81% enantiomeric excess (e.e.)] was isolated from A. lappa petioles. In sharp contrast, lignans whose predominant enantiomers have the opposite absolute configuration to that of (+)-secoisolariciresinol [i.e., (-)-matairesinol (>99% e.e.), (-)-arctigenin (>99% e.e.), and (-)-secoisolariciresinol (65% e.e.)] were isolated from seeds of the species. The stereochemical diversity of secoisolariciresinol was demonstrated with enzyme preparations from A. lappa petioles and seeds. Thus, a petiole enzyme preparation catalyzed the formation of (+)-pinoresinol (33% e.e.), (+)-lariciresinol (30% e.e.), and (+)-secoisolariciresinol (20% e.e.) from achiral coniferyl alcohol in the presence of NADPH and H202, whereas that from ripening seeds catalyzed the formation of (-)-pinoresinol (22% e.e.), (-)-lariciresinol (>99% e.e.), and (-)-secoisolariciresinol (38% e.e.) under the same conditions. In addition, the ripening seed enzyme preparation mediated the selective formation of the optically pure (>99% e.e.) (-)-enantiomer of matairesinol from racemic (+/-)-secoisolariciresinols in the presence of NADP. These results indicate that the stereochemical mechanism for lignan biosynthesis in A. lappa varies with organs, suggesting that multiple lignan-synthesizing isozymes are involved in the stereochemical control of lignan formation in A. lappa.  相似文献   

6.
Formate was formed in extracts of Chlorogonium elongatum via direct cleavage of pyruvate by a pyruvate formate-lyase (PFL, EC 2.3.1.54). The conversion of PFL to the catalytically active form required S-adenosylmethionine, ferric (2+), photoreduced deazariboflavin as reductant, pyruvate as allosteric effector and strict anaerobic conditions. At the optimum pH (pH 8.0), PFL catalyzed formate formation, pyruvate synthesis and the isotope exchange from [14C]formate into pyruvate with rates of 30.0, 1.5 and 1.2 nmol min-1 mg-1 protein, respectively. Treatment of the active enzyme with O2 irreversibly inactivated PFL activity (half-time 2 min). In addition to PFL, the activities of phosphotransacetylase (EC 2.3.1.8), acetate kinase (EC 2.7.2.1), aldehyde dehydrogenase (CoA acetylating, EC 1.2.1.10) and alcohol dehydrogenase (EC 1.1.1.1) were also detected in extracts of C. elongatum. The occurrence of these enzymes indicates pyruvate degradation via a formate-fermentation pathway during anaerobiosis of algal cells in the dark.Abbreviations DTT dithiothreitol - Hepes 4-(2-hydroxyethyl)-1-piperazine+ethane sulfonic acid - PFL pyruvate formate-lyase  相似文献   

7.
Polyamine oxidase (EC 1.5.3.3) activity has not been detected previously in cells of dicotyledonous plants, although it has been characterized extensively in monocotyledonous plants. Evidence is presented in this report for the occurrence of polyamine oxidase in dialyzed crude extracts of the dicotyledonous plant, Medicago sativa L. (alfalfa). Three enzyme assays were used to quantitate the formation of the three products of the reaction catalyzed by polyamine oxidase. 1-Pyrroline formation was measured colorimetrically as a yellow quinazolinium complex with o-aminobenzaldehyde. Hydrogen peroxide formation was measured spectrophotometrically with a coupled peroxidase assay system by peroxidative oxidation of guaiacol. [3H]1,3-Diaminopropane formation was measured by using [1,8-3H]spermidine as the substrate and separating the radiolabelled reaction product from the substrate by paper electrophoresis. This latter assay provided evidence that a polyamine oxidase of type [EC 1.5.3.3] catalyzed the cleavage reaction between a secondary nitrogen atom and an adjacent carbon of the butyl moiety of spermidine. Significant polyamine oxidase activity was detected in floral tissues, cortex tissues of the root, young leaves, and young germinated seedlings of alfalfa. The occurrence of polyamine oxidase in alfalfa accounts for the formation of the essential substrate, 1,3-diaminopropane, required for the biosynthesis of the uncommon polyamines, norspermidine and norspermine, which we have recently detected in alfalfa.Abbreviations PAO polyamine oxidase - MOPS [3-(N-morpholino)propanesulfonic acid] - MES [2-(N-morpholino)ethanesulfonic acid] - TES [N-tris (hydroxymethyl)methyl-2-aminoethanesulfonic acid] - BICINE [N,N-bis (2-hydroxyethyl)glycine] - DTC diethyldithiocarbamic acid - Rm the distance of migration of a polyamine relative to putrescine after electrophoresis on paper  相似文献   

8.
The conversion of methanol by cell-free extracts of the acetogenic bacterium Eubacterium limosum was studied. Incubation of mixed cell-free extracts of both E. limosum and Methanobacterium formicicum resulted in methane formation from methanol in the presence of ATP and 2-mercaptoethanesulfonic acid. The separate extracts were not able to perform this reaction. Addition of ferredoxin obtained from Methanosarcina barkeri to the mixed extracts resulted in increased methane formation. The enzyme, responsible for methanol binding in cell-free extract of E. limosum, was inactivated by FAD under N2 and exhibited maximal activity under an atmosphere of H2. This enzyme contains a firmly bound cobalamin which was methylated by methanol in the presence of ATP. It was demethylated in the presence of methylcobalamin: coenzyme M methyltransferase obtained from M. barkeri under concomitant formation of methylated coenzyme M. These properties are similar to those of methanol: 5-hydroxybenzimidazolylcobamide methyltransferase from M. barkeri. It was proposed that methylotrophic acetogens and methylotrophic methanogens use similar enzymes in the first step of methanol conversion.Abbreviations HS-CoM 2-mercaptoethanesulfonic acid - CH3S-CoM 2-(methylthio)ethanesulfonic acid - BrES 2-bromoethanesulfonic acid - TES N-tris(hydroxymethyl)-methyl-2-aminoethanesulfonic acid - MT1 methanol: 5-hydroxybenzimidazolylcobamide methyltransferase - MT2 methylcobalamin - HS-CoM methyltransferase - DMBI 5,6-dimethylbenzimidazole and HBI, 5-hydroxybenzimidazole, are -ligands of corrinoids - (S-CoM)2 2,2-dithiodiethanesulfonic acid  相似文献   

9.
Aminoethoxyvinylglycine (AVG) and cobalt ions strongly inhibit the conversion of added methionine or aminocyclopropane-1-carboxylic acid (ACC) into ethylene by green-coloured, non-stressed Norway spruce (Picea abies L.) needles but only 30%–40% of basal ethylene formation is affected by such inhibitors. In addition, free radical-mediated ACC-independent ethylene formation (AIEF) of the type released by brown-coloured spruce needles also occurs in extracts from healthy green-coloured needles. Treatment with CdCl2 (10 mM), Na2S2O5 (5 mM) or FeSO4 (10 mM) induces 3–7 fold increases in the rates of ethylene evolution from green-coloured needles. However, only Cd2+-induced ethylene formation is inhibited by AVG while ethylene induced by S2O5 2- or Fe2+ is insensitive to added AVG although increased levels of ACC have also been detected in these treatments. Nevertheless, ethylene-forming decomposition of the precursors of AIEF is accelerated by S2O5 - or Fe2+ which indicates that the ethylene released from green-coloured spruce needles is formed by a combination of both the ACC-dependent and AIEF pathways.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - AIEF ACC-independent ethylene formation - EFE ethylene-forming enzyme - MACC N-malonyl(amino)cyclopropane-1-carboxylic acid - DTBN di-tert-butylnitroxide - MNP 2-methyl-2-nitrosopropane - SAM S-adenosylmethionine - TEMPO 2,2,6,6-tetramethyl-1-piperidine-N-oxyl  相似文献   

10.
Purple nonsulfur bacteria, Rhodospirillum rubrum and Rhodopseudomonas spheroides were found to possess coenzyme B12-dependent glutamate mutase activity. Cell-free extracts of these bacteria grown on Co2+-containing media catalyzed the conversion of glutamate to β-methylaspartate and further to mesaconate. The activity of the cell-free extracts of these organisms cultivated on Co2+-deficient media was markedly lower than that of the normal cells. Addition of coenzyme B12 to the former reaction mixture enhanced the mesaconate formation via β-methylaspartate. These results indicate the involvement of coenzyme Independent glutamate mutase of these bacteria in the dissimilation of glutamate to acetyl-CoA and pyruvate through the following pathway.

glutamate→β→methylaspartate→mesaconate→citramalate→→acetyl-CoA, pyruvate On the other hand, a greater part of glutamate was converted to α-hydroxyglutarate and succinate with the cell-free extracts of these photosynthetic bacteria. This fact, taking account of the presence of propionyl-CoA carboxylase in these bacteria, implies the participation of coenzyme B12-dependent (R)-methylmalonyl-CoA mutase in the formation of succinate via the following route.

glutamate→α-ketoglutarate→α-hydroxyglutarate→propionate→propionyl-CoA→(S)-methylmalonyl-CoA→(R)-methylmalonyl-CoA→succinyl-CoA  相似文献   

11.
Treponema denticola convertedl-ornithine, a product ofl-arginine catabolism, to putrescine via a decarboxylation reaction and to proline via a deamination reaction. Ornithine decarboxylation byT. denticola extracts was stimulated by pyridoxal 5′-phosphate. In the absence of pyridoxal 5′-phosphate, (NH4)2SO4-fractionated extracts converted ornithine to proline and ammonia. This activity was not stimulated by α-keto acids, nicotinamide adenine dinucleotide, reduced nicotinamide adenine dinucleotide or ADP. Neither ornithine δ-transaminase (l-ornithine: 2-oxoacid aminotransferase, EC 2.6.1.13) nor Δ1 reductase [l-proline: NAD(P) 5-oxidoreductase, EC 1.5.1.2.] activity was detectable in cell extracts. These results indicate that formation of proline from ornithine inT. denticola is catalyzed by an enzyme system analogous to the ornithine cyclase (deaminating) ofClostridium sporogenes. Exogenous ornithine inhibited the growth ofT. denticola. Thus, in addition to generating putrescine and proline, the ornithine dissimilatory pathways may serve to prevent accumulation of inhibitory concentrations of ornithine in the spirochete's environment.  相似文献   

12.
An in vitro nucleosome assembly system has been established from cell-free extracts of the fungusUstilago maydis. The extract catalyzed DNA supercoiling in the absence of exogenously added co-factors such as ATP and MgCl2 and was inhibited by moderate concentrations (200 mM) of KCl or NaCl. DNA supercoiling occurs via the formation of nucleosomes. Similar extracts, displaying the same activity, were prepared fromSaccharomyces cerevisiae andCandida albicans, suggesting that the extract preparation protocol may be useful for many lower eukaryotic systems. An extract prepared from a strain ofU. maydis lacking topoisomerase I failed to catalyze nucleosome assembly, clearly implicating this enzyme in this process. Addition of purified topoisomerase I, and, to a lesser extent, topoisomerase II, to the top1 extract regenerated the supercoiling activity. Our results provide a method for preparing assembly extracts from organisms, that are particularly amenable to genetic manipulation.  相似文献   

13.
γ-Glutamylmethylamide (γ-GMA) synthetase was detected in crude extracts of Methylophaga sp. AA-30, but neither methylamine dehydrogenase nor N-methylglutamate dehydrogenase was observed. A large amount of γ-GMA was accumulated in the cells when the growth on methanol-methylamine was inhibited with iodoacetate, but the accumulation was not observed in the cells grown on methanol-(NH4)2SO4. It is thought that γ-GMA is a metabolic intermediate of the methylamine-dissimilating pathway in the bacterium. In addition, γ-GMA-dissimilating enzymes were found in methylamine-grown cells. The enzymes, which consisted of H protein and L protein, required α-ketoglutaric acid, Mg2+ or Mn2+, and ammonia as a cofactor. Although the enzyme catalyzed the formation of glutamate from γ-GMA, it did not catalyze the formation of N-methylglutamate. Consequently, in this bacterium, methylamine seems to be metabolized through a different pathway from the N-methylglutamate pathway.  相似文献   

14.
Fucoidan is a uniquely-structured sulfated polysaccharide found in the cell walls of several types of brown seaweed that has recently, especially as enzyme-digested fucoidan extract, attracted a lot attention due to its anti-tumor potential. In this study, we evaluated the effects of enzyme-digested fucoidan extracts prepared from seaweed Mozuku of Cladosiphon novae-caledoniae kylin on in vitro invasion and angiogenesis abilities of human tumor cells. First, we evaluated the effect of the fucoidan extracts on oxidative stress of tumor cells, and demonstrated that intracellular H2O2 level and released H2O2 from tumor cells were both greatly repressed upon the treatment with the fucoidan extracts, suggesting that fucoidan extracts ameliorate oxidative stress of tumor cells. Next, we tested for the effects of fucoidan extracts on invasion ability of human fibrosarcoma HT1080 cells, showing that fucoidan extracts significantly inhibit their invasion, possibly via suppressing matrix metalloproteinases (MMPs) MMP-2/9 activities. Further, we investigated the effects of the fucoidan extracts on angiogenesis of human uterine carcinoma HeLa cells, and found that fucoidan extracts suppressed expression and secretion of an angiogenesis factor vascular endothelial growth factor (VEGF), resulting in suppressed vascular tubules formation of tumor cells. The results taken together clarified that enzyme-digested fucoidan extracts from Cladosiphon novae-caledoniae kylin possess inhibitory effects on invasion and angiogenesis of tumor cells. These effects might, at least partially, be elicited by the antioxidative potential of enzyme digested fucoidan extracts.  相似文献   

15.
Cell extracts of a nonsporeforming strictly anaerobic bacterium, Acetobacterium woodii produced acetate in N-tris(Hydroxymethyl)methyl-2-aminoethane sulfonic acid or phosphate buffers from hydrogen and carbon dioxide. The formation of acetate was not dependent on the presence of ATP in the reaction mixture; ADP also did not influence the acetate production. Since acetic acid is the main fermentation product during growth of A. woodii with H2 and CO2, ATP must be synthesized in the course of acetate formation. The possible sites of ATP synthesis are discussed.  相似文献   

16.
Currently there are three major hypotheses that have been proposed for estrogen induced carcinogenicity, however exact etiology remains unknown. Based on the chemical logic, studies were undertaken to investigate if estrogens could generate quinone methides in an oxidative environment which then could cause DNA damage in humans. In presence of MnO2 estrogens were oxidized to quinone methides. Surprisingly quinone methides were found to be stable with t1/2 of 20.8 and 4.5 min respectively. Incubation of estrogens with lactoperoxidase (LPO) and H2O2 resulted in formation of respective quinone methides (E1(E2)-QM). Subsequent addition of adenine to the assay mixture lead to trapping of E1(E2)-QM, resulting in formation of adenine adducts of estrogens, E1(E2)-9-N-Ade. Targeted ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) based metabolomic analysis of the breast tissue extracts showed the presence of adenine adducts of estrogens, E1(E2)-9-N-Ade, along with other estrogen related metabolites. Identity of E1(E2)-N-Ade in LPO assay extracts and breast tissue extracts were confirmed by comparing them to pure synthesized E1(E2)-9-N-Ade standards. From these results, it is evident that peroxidase enzymes or peroxidase-like activity in human breast tissue could oxidize estrogens to electrophilic and stable quinone methides in a single step that covalently bind to DNA to form adducts. The error prone repair of the damaged DNA can result in mutation of critical genes and subsequently cancer. This article reports evidence for hitherto unknown estrogen metabolic pathway in human breast, catalyzed by peroxidase, which could initiate cancer.  相似文献   

17.
The first stereoselective synthesis of meso-secoisolariciresinol is reported. A comparison of the cytotoxic and immunosuppressive activity between meso-secoisolariciresinol and optically active secoisolariciresinols was similarly performed for the first time. Both enantiomers of secoisolariciresinol accelerated IgM production, although meso-secoisolariciresinol did not affect IgM production. Only meso-secoisolariciresinol showed cytotoxic activity.  相似文献   

18.
Desulfotomaculum acetoxidans oxidizes acetate to CO2 with sulfate. This organism metabolizes acetate via a pathway in which C1 units rather than tri- and dicarboxylic acids are intermediates. We report here that cell extracts of D. acetoxidans catalyzed an exchange between CO2 and the carboxyl group of acetate at a rate of 90 nmol · min-1 · mg-1 protein which is sufficient to account for the in vivo acetate oxidation rate of 250 nmol · min-1 · mg-1 protein. The reaction was strictly dependent on both ATP and coenzyme A. The extracts contain high activities of acetate kinase (6.3 U · mg-1 protein) and phosphotransacetylase (60 U · mg-1 protein). These findings indicate that acetyl-CoA rather than acetyl-phosphate or acetate is the substrate of the carbon-carbon cleavage activity. Exchange was only observed in the presence of strong reducing agents such as Ti3+. Interestingly, the cell extracts also catalyzed the reduction of CO2 to CO with Ti3+ as electron donor (120 nmol · min-1 · mg-1 protein). Carbon monoxide dehydrogenase and other oxidoreductases involved in acetate oxidation were found to be partially associated with the membrane fraction suggesting a membrane localization of these enzymes.Abbreviations MOPS Morpholinopropane sulfonic acid - Tricine N-tris(hydroxymethyl)-methylglycine - DTT d,l-1,4-Dithiothreitol - DMN 2,3-Dimethyl-1,4-naphthoquinone - MVOX Methyl viologen, oxidized - APS Adenosinephosphosulfate - SRB Sulfate reducing bacteria - U mol product formed per min  相似文献   

19.
From our previous studies on the mechanism of methane formation from acetate it was known that cell extracts of acetate-grown Methanosarcina barkeri (100 000 × g supernatant) catalyze the conversion of acetyl-CoA plus tetrahydromethanopterin (=H4MPT) to methyl-H4MPT, CoA, CO2 and presumably H2. We report here that these extracts, in the absence of H4MPT, mediated an isotope exchange between CO2 ([S]0.5 v=0.2% in the gas phase) and the carbonyl group of acetyl-CoA at almost the same specific rate as the above conversion (10 nmol · min–1 · mg protein–1). Both the exchange and the formation of methyl-H4MPT were inhibited by N2O, suggesting that a corrinoid could be the primary methyl group acceptor in the acetyl-CoA C-C-cleavage reaction. Both activities were dependent on the presence of H2 (E0=–414 mV). Ti(III)citrate (E0=–480 mV) was found to substitute for H2, indicating a reductive activation of the system. In the presence of Ti(III)citrate it was shown that the formation of CO2 from the carbonyl group of acetyl-CoA is associated with a 1:1 stoichiometric generation of H2. Free CO, a possible intermediate in CO2 and H2 formation, was not detected.Non-standard abbreviations AcCoA acetyl-CoA - acetyl-P acetyl phosphate - OH-B12 hydroxocobalamin - H-S-CoM coenzyme M = 2-mercaptoethanesulfonate - CH3-S-CoM methyl-coenzyme M = 2-(methylthio)ethanesulfonate - H-S-HTP N-7-mercaptoheptanoylthreonine phosphate - HTP-S-S-HTP disulfide of H-S-HTP - CoM-S-S-HTP disulfide of H-S-CoM and H-S-HTP - H4MPT tetrahydromethanopterin - CH3-H4MPT N5-methyl-H4MPT - DTT dithiothreitol - MOPS morpholinopropane sulfonic acid  相似文献   

20.
An improved method that uses a single alkaline Al2O3 chromatography step was developed both for separating Taxol from the extracts of Taxus cuspidate callus cultures, and meanwhile converting other taxanes to Taxol catalyzed by the Al2O3 adsorbent. Under the optimized operating conditions, a Taxol recovery of 170% was obtained. The final Taxol content was 29% starting from less than 1% in the initial extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号