首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidation of low density lipoprotein (LDL) causes changes in the biological properties of LDL that may be important in atherogenesis. That LDL oxidation is accompanied by lipid peroxidation has been demonstrated, but previous analyses of the products of LDL oxidation have not included measurement of specific lipid hydroperoxy and hydroxy derivatives. In this study, LDL was isolated from plasma of normal volunteers and exposed to oxygenated buffer and 5 microM CuSO4 for 24 h. Oxidized LDL showed decreased linoleate (18:2) and arachidonate (20:4) content with increased concentrations of thiobarbituric acid reactive substances (TBARS) and hydroxy and hydroperoxy 18:2 and 20:4. The electrophoretic mobility of the LDL protein also was increased by oxidation. After reduction, the hydroxy fatty acids were characterized by gas chromatography-mass spectrometric analysis of the trimethylsilyl ether methyl ester derivatives. The hydroperoxy and hydroxy derivatives accounted for approximately 70% of the linoleate consumed during LDL oxidation and represented 45-fold more product than was measured by TBARS analysis. Numerous biological properties, including cytotoxic and chemoattractant activities of hydroperoxy and hydroxy fatty acids, have been reported, but the manner in which they may contribute to atherogenesis requires further study.  相似文献   

2.
Activation of rat brain protein kinase C by lipid oxidation products   总被引:3,自引:0,他引:3  
The unsaturated fatty acid components of membrane lipids are susceptible to oxidation in vitro and in vivo. The initial oxidation products are hydroperoxy fatty acids that are converted spontaneously or enzymatically to a variety of products. Hydroperoxy derivatives of oleic, linoleic, or arachidonic acids stimulate the activity of protein kinase C (PKC) purified from rat brain. The hydroperoxy acids satisfy the requirement of PKC for phospholipid (e.g., phosphatidylserine). Activation is observed in the presence or absence of 1 mM Ca2+. Reduction of the hydroperoxides to alcohols or dehydration of the hydroperoxides to ketones increases the Ka for activation three- to fourfold but does not significantly reduce the maximal extent of PKC activation. The Ka's for activation by hydroperoxy acids are approximately half the values exhibited by the unoxidized fatty acids. Since oxidation of unsaturated fatty acids to hydroperoxides is the first event in lipid peroxidation, activation of PKC by hydroperoxy fatty acids may be an early cellular response to oxidative stress.  相似文献   

3.
Lipoxygenase-dependent degradation of storage lipids   总被引:17,自引:0,他引:17  
Oilseed germination is characterized by the mobilization of storage lipids as a carbon source for the germinating seedling. In spite of the importance of lipid mobilization, its mechanism is only partially understood. Recent data suggest that a novel degradation mechanism is initiated by a 13-lipoxygenase during germination, using esterified fatty acids specifically as substrates. This 13-lipoxygenase reaction leads to a transient accumulation of ester lipid hydroperoxides in the storage lipids, and the corresponding oxygenated fatty acid moieties are preferentially removed by specific lipases. The free hydroperoxy fatty acids are subsequently reduced to their hydroxy derivatives, which might in turn undergo beta-oxidation.  相似文献   

4.
The effect of hydroperoxy fatty acids on reactions involved in the acylation-deacylation cycle of synaptic phospholipids was studied in vitro, using nerve ending fraction isolated from rat forebrain. 15-Hydroperoxyeicosatetraenoic acid (15-HPETE), 13-hydroperoxylinoleic acid (13-HP 18: 2), and hydroperoxydocosahexaenoic acid (22:6 Hpx), at 25 microM final concentration, all inhibited the incorporation of [1-14C]arachidonate into synaptosomal phosphatidylinositol (PI), phosphatidylcholine (PC), and triacylglycerides by 50-80%. The lowest effective concentration of 15-HPETE and 13-HP 18:2 resulting in significant inhibition of the reacylation of PI was 5 microM, whereas the inhibition of [1-14C]arachidonate incorporation into PC required 10 and 5 microM hydroperoxy fatty acids, respectively. Cumene hydroperoxide and tert-butyl hydroperoxide at concentrations of 100 microM did not inhibit reacylation of PI and PC. Synthesis of labeled arachidonoyl-CoA from [1-14C]arachidonate was decreased by about 50% by 25 microM hydroperoxy fatty acids both in synaptosomes and in the microsomal fraction. Use of [1-14C]arachidonoyl-CoA as a substrate, to bypass the fatty acid activation reaction, revealed that activity of acyltransferase was not affected significantly by 25 microM 15-HPETE and 13-HP 18:2. At the same time, however, the hydrolysis of labeled arachidonoyl-CoA was substantially enhanced. Exposure of synaptosomes to 25 microM fatty acid hydroperoxides did not affect significantly the endogenous concentrations of five major free fatty acids. It is concluded that (1) among synaptic phospholipids, reacylation of PI and PC is the most susceptible to the inhibitory action of fatty acid hydroperoxides, and (2) the enzymes affected by these compounds in nerve endings are arachidonoyl-CoA synthetase and hydrolase.  相似文献   

5.
A method for the simultaneous determination of hydroperoxides of phosphatidylcholines (PC), triacylglycerols (TG) and cholesterol esters (CE) has been developed. A sample was separated into a combined TG and CE hydroperoxides fraction and a PC hydroperoxides fraction on a short silica column. The fractions were introduced into an ODS column and another silica column by a valve-switching device. The PC hydroperoxides were monitored by a post-column detection system with diphenyl-1-pyrenylphosphine, and the TG and CE hydroperoxides were monitored by another switching device. With this system, the hydroperoxides were determined at the picomole level within 32 min. Their detection limits were 2–4 pmol at a signal-to-noise ratio of 3, and the relative standard deviations of the peak areas were 1.6–3.1%. This method was successfully applied to determine lipid hydroperoxides in human plasma.  相似文献   

6.
Photosensitized oxidation of trioleoylglycerol (TO), trilinoleoylglycerol (TL), trilinolenoylglycerol (TLn) and vegetable oil triacylglycerols (triglycerides, TG) was carried out in isopropanol using methylene blue as a photosensitizer. Isomeric compositions of hydroperoxy fatty acid components of the oxidized TG were determined by hydrogenation, methanolysis and mass chromatographic analysis of the resulting methyl hydroxy octadecanoate. TO gave 9- and 10-isomers; TL, 9-, 10-, 12- and 13-isomers; and TLn, 9-, 10-, 12-, 13-, 15- and 16-isomers. It was concluded that each unsaturated fatty acid component of vegetable oil TG yields isomeric hydroperoxides during photosensitized oxidation in a manner similar to the corresponding unsaturated fatty acid methyl ester. TL monohydroperoxides were isolated from the photooxidized TL and hydrolyzed by pancreatic lipase. The hydrolysis products consisted of dilinoleoylglycerol, monolinoleoylglycerol, linoleic acid and their respective hydroperoxides. Formation of a hydroperoxy fatty acid component was observed during photoirradiation of vegetable oils in the bulk phase without methylene blue. The isomeric compositions of the resulting methyl hydroxy octadecanoate support the idea that singlet oxygen is responsible for the formation of hydroperoxides in the initial stage of photooxidation.  相似文献   

7.
An important event in the formation of atherosclerotic lesions is the uptake of modified low density lipoprotein (LDL) by macrophages via scavenger receptors. Modification of LDL, which results in its recognition by these receptors, can be initiated by peroxidation of LDL lipids. The first step in this process is the formation of monohydroperoxy derivatives of fatty acids, which are subsequently degraded to the corresponding monohydroxy compounds, or to a variety of secondary oxidation products. In order to understand this process more completely, we have developed a mass spectrometric procedure to measure the amounts of specific hydroperoxy/hydroxy fatty acids formed by oxidation of the major unsaturated fatty acids in human LDL, oleic acid, linoleic acid, and arachidonic acid. Oxidation of human LDL in the presence of a relatively strong stimulus (20 microM CuSO4) resulted in very large increases in the amounts of the major monohydroxy derivatives of linoleic acid (9- and 13-hydroxy derivatives) and arachidonic acid (5-, 8-, 9-, 11-, 12-, and 15-hydroxy derivatives) in LDL lipids in the early stages of the reaction. After 20 h, the amounts of these products declined due to substrate depletion, but large amounts of monohydroxy derivatives of oleic acid (8-, 10-, and 11-hydroxy derivatives) were detected. Although thiobarbituric acid-reactive substances clearly increased under these conditions, the changes were not nearly so dramatic as those observed for monohydroxy fatty acids. Oxidation of LDL in the presence of endothelial cells, a much milder stimulus, resulted in 2.5- to 3-fold increases in the amounts of monohydroxy derivatives of linoleic and arachidonic acids, as well as thiobarbituric acid-reactive substances, with more modest increases in the amounts of hydroxylated derivatives of oleic acid. There was little positional specificity in the oxidation of the above fatty acids in the presence of either stimulus, suggesting that the formation of these products proceeds primarily by lipid peroxidation, rather than by catalysis by lipoxygenases. However, an important role for lipoxygenases in the initiation of these reactions cannot be excluded. In conclusion, oxidation of LDL in the presence of copper ions or endothelial cells results in the formation of a large number of monohydroxy derivatives of oleic, linoleic, and arachidonic acids. The relative amounts of products formed from each of these fatty acids depends on the strength of the stimulus as well as the incubation time.  相似文献   

8.
Contractions of isolated iris sphincter muscles were measured in response to several free fatty acids, hydroperoxy and hydroxy derivatives of 20:3(n-3), 20:3(n-6) and 20:4, PGH2, and the epoxymethano methano analogs of PGH2. The free acids of prostaglandin precursors elicited comparatively strong contractions, hydroperoxy and hydroxy acids gave intermediate and nonspecific response whereas nonprostaglandin precursor acids elicited little response. PGH2 was 100 to 1000 times more effective than arachidonic acid or the epoxymethano analogs. The latter compounds inhibited the production of contractions by PGH2. These results allow an interpretation that the iris sphincter muscle contains an active thromboxane synthase and receptors for endoperoxide and thromboxane that initiate contraction.  相似文献   

9.
Dietary hydroperoxides are being discussed as potential health hazards contributing to oxidative stress-related diseases. However, how food-born hydroperoxides could exert systemic effects remains elusive in view of the limited chances to be absorbed. Therefore, the metabolic fate of 13-HPODE (13-hydroperoxy octadecadienoic acid), 13-HODE (13-hydroxy octadecadienoic acid) and linoleic acid (LA) was investigated in a CaCo-2 cell monolayer as a model of the intestinal epithelium. [1-14C]-13-HPODE, up to a non-cytotoxic concentration of 100 microM, did not cross the CaCo-2 cell monolayer unreduced if applied to the luminal side. The [1 -14C]-HPODE-derived radioactivity was preferentially recovered from intracellular and released diacylglycerols (DG), phospholipids (PL) and cholesterol esterified with oxidized fatty acids (oxCE). A similar distribution pattern was obtained with 13-HODE. In contrast, LA is preferentially incorporated into triacylglycerols (TG), cholesteryl esters (CE) and PL (but mainly released as TG). 13-HPODE dose-dependently decreased the incorporation of LA into released TG, while LA accumulated in cellular and released DGs, effects similarily exerted by 13-HODE. We concluded that food-born hydroperoxy fatty acids are instantly reduced by the gastrointestinal glutathione peroxidase, which was previously shown to persist in selenium deficiency. Accordingly, modulation of the glutathione peroxidases by selenium deprivation/repletion did not modify the disturbance of the lipid metabolism by 13-HPODE. Thus, hydroperoxy fatty acids disturb intestinal lipid metabolism by being esterified as hydroxy fatty acids into complex lipids, and may render lipoproteins synthesized thereof susceptible to further oxidative modifications.  相似文献   

10.
Hydroperoxides of 18:2n-6 and 20:4n-6 were obtained by autoxidation and photooxidation. The enantiomers were separated as free acids (Reprosil Chiral-NR column, eluted with hexane containing 1-1.2% alcoholic modifier) and analyzed by on line UV detection (234nm) and liquid chromatography-MS/MS/MS of carboxylate anions (A(-)-->(A(-)-18)-->full scan) in an ion trap. The combination of UV and MS/MS/MS analysis facilitated identification of hydroperoxides even in complex mixtures of autoxidized or photooxidized fatty acids. The signal intensities increased about two orders of magnitude by raising the isolation width of A(-) from 1.5amu to 5 or 10amu for cis-trans conjugated hydroperoxy fatty acids, and one order of magnitude or more for non-conjugated hydroperoxy fatty acids. The S enantiomer of 8-, 9-, 10-, and 13-hydroperoxyoctadecadienoic acids and the S enantiomer of cis-trans conjugated hydroperoxyeicosatetraenoic acids eluted before the corresponding R enantiomer with two exceptions (11-hydroperoxylinoleic acid and 8-hydroperoxyeicosa-5Z,9E,11Z,14Z-tetraenoic acid). The separation of enantiomers or regioisomers could be improved by the choice of either isopropanol or methanol as alcoholic modifier.  相似文献   

11.
A method is presented for determination of the enantiomeric composition of hydroxyperoxides formed by enzymic oxygenation of unsaturated fatty acids. After reduction of the hydroperoxy group with NaBH4, and esterification, the positional isomers of the resulting hydroxy compounds are separated by high performance liquid chromatography. The latter are subsequently subjected to a chiral derivatization to form diastereomeric alpha-methoxy-alpha-trifluoromethylphenylacetate esters. Determination of the diastereomeric composition by a NMR shift experiment furnishes the enantiomeric composition of the parent hydroperoxides. The method has been applied to the hydroperoxides formed by incubation of linoleic acid by corn germ or soybean lipoxygenase. Our results indicate that under the conditions used the hydroperoxides are mainly enantiospecifically formed.  相似文献   

12.
Panaxadiol is a dammarane‐type ginsenoside having high ginseng content. The 3‐hydroxy group of panaxadiol (PD) was modified by fatty acids and diacids. The modified panax glycol had enhanced anticancer activity. Twelve PD derivatives were evaluated and purified by chemical synthesis, column chromatography, co‐synthesis, and identification. The human leukemia cells THP‐1, HL‐60, and human prostate cancer cell lines PC‐3 were evaluated; PD derivatives were tested and evaluated in vitro by MTT assay. The results showed that the antitumor activities of some derivatives on three tumor cell lines were better than those of PD.  相似文献   

13.
gamma-Irradiation of rat liver microsomal suspensions resulted in the accumulation of both malondialdehyde (MDA) and lipid hydroperoxides. The presence of 2-mercaptopropionylglycine (MPG) during the irradiation period decreased the formation of MDA and lipid hydroperoxides in a dose (MPG)-dependent manner. This may be attributed to the ability of MPG to scavenge the free radicals produced by irradiation. Post-irradiation incubation of microsomes further enhanced the production of both MDA and lipid hydroperoxides; when high concentrations of MPG were present during the incubations the production of MDA and lipid hydroperoxides was substantially decreased. This antioxidant role of MPG was demonstrated for both pre-irradiated microsomes and liposomes and is thought to be due to the conversion of the hydroperoxy to hydroxy fatty acids within the lipid bilayer, as well as the scavenging action on initiating free radicals.  相似文献   

14.
A method to detect and determine phospholipid peroxidation products in a biological system was developed using reversed-phase high performance liquid chromatography and normal-phase HPLC. Reversed-phase HPLC could separate phosphatidylcholine (PC) hydroperoxides and phosphatidylethanolamine (PE) hydroperoxides of rat liver from the respective phospholipids. A linear relationship was observed between these hydroperoxides and their peak areas on the chromatogram. In the experiment with rats administered CCl4, reversed-phase HPLC gave prominent, large peaks attributable to the peroxidation of phospholipids, and the peroxide level of the liver phospholipids was tentatively determined. Normal-phase HPLC analysis confirmed that both PC and PE in the liver phospholipids were peroxidized after CCl4 treatment. Neither the thiobarbituric acid value of the liver homogenate nor the fatty acid composition of the liver phospholipid fraction showed any significant difference between CCl4-treated and control rats. It is concluded that normal-phase HPLC and reversed-phase HPLC can complement each other to serve as a direct and sensitive method for the determination of lipid peroxide levels in a biological source. However, it was difficult to distinguish phospholipid hydroperoxides from their hydroxy derivatives.  相似文献   

15.
An automatic method for the determination of hydroperoxides of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) is reported. Sample plasma was deproteinized with a fourfold volume of methanol. After centrifugation, the supernatant was injected directly into an HPLC system without further treatment. The hydroperoxides of PC and PE were concentrated and washed on an ODS column followed by introduction into two analytical columns, a silica gel and an aminopropylsilica gel column, which were connected in series, by column switching. After the separation, they were detected by postcolumn detection with diphenyl-1-pyrenylphosphine. The compounds were determined at picomole levels within 30 min with good reproducibilities. By using only a silica gel column as an analytical column, PC hydroperoxides were determined within 20 min, and samples could be injected into it at 15-min intervals. Those methods made it possible to inject a sample of up to 2 ml at one time and up to 8 ml by repeated injections and to determine phospholipid hydroperoxides in human plasma at picomole levels.  相似文献   

16.
Intact human sperm incorporated radiolabelled fatty acids into membrane phospholipids when incubated in medium containing bovine serum albumin as a fatty acid carrier. The polyunsturated fatty acids were preferentially incorporated into the plasmalogen fraction of phospholipid. Uptake was linear with time over 2 hr; at this time sufficient label was available to determine the loss of fatty acids under conditions of spontaneous lipid peroxidation. Loss of the various phospholipid types, the loss of the various fatty acids from these phospholipids, and the overall loss of fatty acids were all first order. The loss of saturated fatty acids was slow with first order rate constant k1 = 0.003 hr?1; for the polyunsaturated fatty acids, arachidonic and docosahexaenoic acids, k1 = 0.145 and 0.162 hr?1, respectively. The rate of loss of fatty acids from the various phospholipid types was dependent on the type, with loss from phosphatidylethanolamine being the most rapid. Among the phospholipid types, phosphatidylethanolamine was lost at the greatest rate. Analysis of fatty acid loss through oxidation products was determined for radiolabelled arachidonic acid. Under conditions of spontaneous lipid peroxidation at 37°C under air in the absence of albumin, free arachidonic acid was found in the medium, along with minor amounts of hydroxylated derivative. All the hydroperoxy fatty acid remained in the cells. In the presence of albumin, all the hydroperoxy fatty acid was found in the supernatant bound to albumin; none could be detected in the cells. Albumin is known as a very potent inhibitor of lipid peroxidation in sperm; its action may be explained, based on these results, as binding the damaging hydroperoxy fatty acids. These results also indicate that a phospholipase A2 may act in peroxidative defense by excising a hydroperoxy acyl group from phospholipid and providing the hydroperoxy fatty acid product as substrate to glutathione peroxidase. This formulation targets hydroperoxy fatty acid as a key intermediate in peroxidative degradation. © 1995 wiley-Liss, Inc.  相似文献   

17.
The lipoxygenase from reticulocytes oxygenates 15LS-HETE to 8-hydroperoxy-15-hydroxy-5,9,11,13-eicosatetraenoic acid and 5-hydroperoxy-15-hydroxy-6,8,11,13-eicosatetraenoic acid only in the presence of catalytic concentrations of monohydroperoxy fatty acids. During this reaction the hydroperoxy fatty acids are converted to more polar products including hydroxy fatty acids. From kinetic measurements of 15LS-HETE oxygenation it was calculated that 1 mol monohydroperoxy fatty acid is consumed during the oxygenation of about 9 mol 15LS-HETE.  相似文献   

18.
A method is described for the separation of beef brain cerebrosides into three fractions containing different classes of fatty acids: nonhydroxy (I), unsaturated nonhydroxy (II), and hydroxy fatty acid cerebrosides (III). The procedure consists of benzoylation of either crude or purified cerebrosides, followed by column chromatographic separation of benzoylated derivatives containing nonhydroxy acids from those containing hydroxy fatty acids. The benzoyl groups are removed by sodium methoxide-catalyzed transesterification; from the reaction mixtures, fractions I and III precipitate. The fraction II present in mother liquor of I was shown to contain mainly short-chain and unsaturated nonhydroxy fatty acid cerebrosides. The fatty acid composition of each fraction was obtained by gas-liquid chromatography.  相似文献   

19.
Rates of disappearance of hydroperoxy groups of various lipid peroxides added to rat liver homogenate differed from each other. The hydroperoxy group of linoleic acid disappeared rapidly, while those of L-3-phosphatidyl choline dilinoleoyl and trilinolenin disappeared slowly. The hydroperoxy groups of cholesterol linoleate were stable in the homogenate. Most of the conjugated dienes of these lipid peroxides remained. The hydroperoxy groups of the unsaturated fatty acids of the phosphatidyl choline were found to be changed to hydroxy groups as analyzed by high-performance liquid chromatography.  相似文献   

20.
Purified prostaglandin endoperoxides (PGG2 and PGH2) and hydroperoxides (15-OOH-PGE2) as well as fatty acid hydroperoxides (12-OOH-20:4, 15-00H-20:4, and 13-OOH-18:2) were examined as effectors of soluble splenic cell guanylate cyclase activity. The procedures described (in the miniprint supplement) for the preparation, purification, and characterization of these components circumvented the use of diethyl ether which obscured effects of lipid effectors because of contaminants presumed to be ether peroxides which were stimulatory to the cyclase. Addition of prostaglandin endoperoxides or fatty acid hydroperoxides to the reaction mixture led to a time-dependent activation of guanylate cyclase activity; 2.5- to 5-fold stimulation was seen during the first 6 min. The degree of stimulation and rate of activation were dependent on the concentration of the fatty acid effector; when initial velocities (6 min) were assessed half-maximal stimulation was achieved in the range of 2 to 3 micrometer. However, by extending the incubation time to 90 min similar maximal increases in specific activity could be achieved with 3 or 10 micrometer PGG2 or PGH2. Activation of guanylate cyclase upon addition of prostaglandin endoperoxides or fatty acid hydroperoxides was prevented or reversed by the thiol reductants dithiothreitol (3 to 5 mM) or glutathione (10 to 15 mM). Na2S2O4, not known as an effective reducing agent of disulfides, prevented but was relatively ineffective in reversing activation after it had been induced by PGG2. Pretreatment of the enzyme preparation with increasing concentrations of N-ethylmaleimide in the range of 0.01 to 1.0 mM prevented activation by PGG2 without affecting basal guanylate cyclase activity. These observations indicate that fatty acid hydroperoxides and prostaglandin endoperoxides promote activation of the cyclase by oxidation of enzyme-related thiol functions. In contrast PGE2, PGF2a, hydroxy fatty acids (13-OH-18:2, 12-OH-20:4) as well as saturated (18:0) monoenoic (18:1), dienoic (18:2), and tetraenoic (20:4) fatty acids were ineffective in promoting cyclase activation in the range of 1 to 10 micrometer. Studies to identify the species of the rapidly metabolized prostaglandin endoperoxides that serve as effectors of the cyclase indicated that PGG2 but not 15-OOH-PGE2 (the major buffer-rearrangement product of PGG2) is most likely an activator. In the case of PGH2, a rapidly generated (30 s) metabolite of PGH2 was found which contained a hydroperoxy or endoperoxy functional group and was equally as effective as PGH2 as an apparent activator of the enzyme. The combined effects of PGG2 and dehydroascorbic acid, another class of activator, exhibited additivity with respect to the rate at which the time-dependent activation was induced. These results suggest that activation of soluble guanylate cyclase from splenic cells can be achieved by the oxidation of sulfhydryl groups that may be associated with specific hydrophobic sites of the enzyme or a related regulatory component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号