首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Human epidermal growth factor (h-EGF) composed of 53 amino acids bearing three intramolecular disulfide bridges was synthesized by the maximum protecting solution method. The synthetic h-EGF coincided with recombinant h-EGF by reverse-phase HPLC, and the sites of three intramolecular disulfide bridges were ascertained by a thermolytic digestion. The synthetic h-EGF possessed m/z 6215.7 in its FAB-MS as expected, and exhibited compatible mitogenic activity.  相似文献   

2.
Hepcidin was first identified as an antimicrobial peptide present in human serum and urine. It was later demonstrated that hepcidin is the long sought hormone that regulates iron homeostasis in mammals. The native peptide of 25 amino acids (Hepc25) contains four disulfide bridges that maintain a β-hairpin motif. The aim of the present study was to assess whether the intramolecular disulfide bridges are necessary for Hepc25 antimicrobial activity. We show that a synthetic peptide corresponding to human Hepc25, and which contains the four disulfide bridges, has an antibacterial activity against several strains of Gram-positive and Gram-negative bacteria. On the contrary, a synthetic peptide where all cysteines were replaced by alanines (Hepc25-Ala) had no detectable activity against the same strains of bacteria. In a further step, the mode of action of Hepc25 on Escherichia coli was studied. SYTOX Green uptake was used to assess bacterial membrane integrity. No permeabilization of the membrane was observed with Hepc25, indicating that this peptide does not kill bacteria by destroying their membranes. Gel retardation assay showed that the Hepc25 binds to DNA with high efficiency, and that this binding ability is dependent on the presence of the intramolecular disulfide bridges. Reduction of Hepc25 or replacement of the eight cysteines by alanine residues led to peptides that were no longer able to bind DNA in the in vitro assay. Altogether, these results demonstrate that Hepc25 should adopt a three-dimensional structure stabilized by the intramolecular disulfide bridges in order to have antibacterial activity.  相似文献   

3.
The sweet protein mabinlin II isolated from the seeds of Capparis masaikai consists of the A chain with 33 amino acid residues and the B chain composed of 72 residues. The B chain contains two intramolecular disulfide bonds and is connected to the A chain through two intermolecular disulfide bridges. The A chain was synthesized by the stepwise fluoren-9-ylmethoxycarbonyl (Fmoc) solid-phase method in a yield of 5.9%, while the B chain was synthesized by a combination of the stepwise Fmoc solid-phase method and fragment condensation in a yield of 6.0%. Disulfide formation and combination of the A and B chains followed by purification by ion-exchange high-performance liquid chromatography (HPLC) gave mabinlin II in a yield of 47.4%. The characterization of the synthetic mabinlin II by HPLC, electrospray ionization mass spectrometry, amino acid analysis, and disulfide bond determination fully supported the expected structure. A 0.1% solution of the synthetic mabinlin II had an astringent-sweet taste. © 1998 John Wiley & Sons, Inc. Biopoly 46: 215–223, 1998  相似文献   

4.
Four different forms of human epidermal growth factor (h-EGF) are found in the culture medium of a recombinant strain of Saccharomyces cerevisiae. These forms were characterized after purification using reverse-phase high-performance liquid chromatography. The most abundant form of secreted recombinant h-EGF has leucine at the carboxyl terminus and is identical with gamma-urogastrone. A second species is identical with the most abundant form except that it lacks the carboxyl-terminal leucine. This form appears to be the product of a carboxypeptidase found in the growth medium. The other two forms of recombinant h-EGF are the respective oxidation products of the above where the single methionine residue has been converted to methionine sulfoxide. These four forms of recombinant h-EGF are fully active; they bind to the EGF receptor of A431 cells as well as stimulate mitotic activity of human foreskin fibroblasts with equal specific activity. The location of the disulfide bonds in the predominant form of recombinant h-EGF was determined following digestion with thermolysin. The amino acid compositions of the resulting peptides showed that the placement of disulfide bonds in recombinant h-EGF is identical with that in murine EGF.  相似文献   

5.
Disulfide bridge formation in the reducing environment of the cytosol is considered a rare event and is mostly linked to inactivation of protein activity. In this report the in vivo redox state of a single-chain Fv (scFv) antibody fragment in the plant cytosol was investigated. The scFv antibody fragment consists of the variable light and heavy chain domains from a mouse IgG antibody, which are connected by a flexible linker peptide. In each domain one disulfide bridge is present. The functionality of antibodies, which are normally secreted via the oxidizing environment of the endoplasmic reticulum, depends on the formation of intramolecular disulfide bridges. We demonstrate that a scFv can form intramolecular disulfide bridges and is functionally expressed in the cytosol of stably transformed plants. In addition, the formation of intermolecular disulfide bridges through a cysteine present in the linker peptide was observed. In contrast, transient expression in tobacco protoplasts resulted in a cytosolic scFv lacking disulfide bridges, which had a substantially reduced affinity for the antigen. This indicates that functionality rather than stability is determined by the presence of disulfide bridges in the in planta-expressed scFv antibody. The controversial observation of disulfide bond formation in the cytosol is discussed.  相似文献   

6.
The 16-kDa rice allergen, RA17, belonging to the alpha-amylase/trypsin inhibitor family was isolated from rice seed and structurally characterized by identifying cystine-containing peptides and predicting the secondary structure and hydrophobic regions. Eight peptides, which constitute three sets of cystine-containing peptides, were purified by HPLC from a thermolytic digest of RA17 and identified by their amino acid sequence and composition, indicating five intramolecular disulfide bridges: Cys34-Cys94, Cys26-(Cys50 or Cys51)-Cys110 and Cys12-(Cys62 or Cys64)-Cys122. Analyses of the CD spectrum and the Chou-Fasman prediction suggested that RA17 had some helical- and sheet-structure regions. Based on these experimental and predicted data, RA17 is proposed to be a globular molecule with a small hydrophobic core having folding restricted by five intramolecular disulfide bridges.  相似文献   

7.
The amino-acid sequence of the proteinase inhibitor specific for elastases from the sea anemone Anemonia sulcata was determined from performic-acid oxidized inhibitor and from three cyanogen bromide fragments of reduced and carboxymethylated inhibitor. The molecule consists of a single polypeptide chain formed from 48 amino-acid residues and is stabilized by three intramolecular disulfide bridges. After cyanogen bromide cleavage of the native protein at methionines 10 and 28 followed by chymotryptic cleavage two fragments each containing a single disulfide bridge were isolated. These indicated the location of three intramolecular disulfide linkages between Cys4 and Cys34 (part of A-loop), Cys8 and Cys27 (B-loop) and Cys16 and Cys48 (C-loop). The sequential homology and the disulfide pattern identified the elastase inhibitor as a Kazal-type inhibitor in which, however, not only the CysI-CysII segment is rather short but interestingly the Cys4-Cys34 disulfide anchoring point (i.e. CysI-CysV) in the C-loop is shifted by one turn in the alpha-helical segment towards the C-terminus. Thus, the elastase inhibitor is a non-classical Kazal-type inhibitor with respect to the positioning of the half-cystines. The inhibitor molecule was modelled based on the known three-dimensional structure of the silver pheasant ovomucoid third domain. The shortened amino-terminal segment was arranged in such a manner to allow disulfide bridge formation between the first cysteine Cys4 and the replaced Cys34 under maintenance of a suitable binding loop conformation. The characteristic ovomucoid scaffold consisting of a central alpha-helix, an adjacent three-stranded beta-sheet and the proteinase-binding loop cross-connected through disulfide bridges CysI-CysV and CysIII-CysVI was conserved.  相似文献   

8.
Summary Trypsin inhibitor EETI II, possessing six cysteines engaged in three disulfide bridges, shares a common structural motif with other proteins of different origins and functions. To understand the principles that govern folding of this largely distributed basic scaffold, mainly composed of a small triple-stranded β-sheet, we have studied different stages in the folding of EETI II. The conformational properties of a synthetic analogue of EETI II possessing only one native (15–27) disulfide bridge were investigated with the combined use of1H NMR and molecular modelling. Although two native-like reverse turns were observed, formation of β-sheet could not be evidenced in the one disulfide analogue, while the motif has been shown to be present in a folding intermediate with two native disulfide bridges (9–21 and 15–27). These results suggest that the structural motif requires stabilisation by two disulfide bridges.  相似文献   

9.
Recombinant human osteoprotegerin chimera is a 90-kDa protein containing a human IgG Fc domain fused to human osteoprotegerin. The molecule is a dimer linked by two intermolecular disulfide bonds and contains eleven intramolecular disulfide bonds per monomer. A cysteine-rich region in osteoprotegerin contains nine disulfide bridges homologous to the cysteine-rich signature structure of the tumor necrosis factor receptor/nerve growth factor receptor superfamily. In this report, we have developed peptide mapping procedures suitable to generate disulfide-containing peptides for disulfide structure assignment of the fusion molecule. The methods employed included proteolytic digestion using endoproteinases Glu-C and Lys-C in combination followed by LC-MS analyses. Disulfide linkages of peptide fragments containing a single disulfide bond were assigned by sequence analysis via detection of (phenylthiohydantoinyl) cystine and/or by MS analysis. Disulfide bonds of a large, core fragment containing three peptide sequences linked by four disulfides were assigned after generation of smaller disulfide-linked peptides by a secondary thermolysin digestion. Disulfide structures of peptide fragments containing two disulfide bonds were assigned using matrix-assisted laser desorption ionization mass spectrometry with postsource decay. Both the inter- and intramolecular disulfide linkages of the chimeric dimer were confirmed.  相似文献   

10.
Trypsin inhibitor EETI II, possessing six cysteinesengaged in three disulfide bridges, shares a commonstructural motif with other proteins of differentorigins and functions. To understand the principlesthat govern folding of this largely distributed basicscaffold, mainly composed of a small triple-stranded-sheet, we have studied different stages in thefolding of EETI II. The conformational properties ofa synthetic analogue of EETI II possessing only onenative (15-27) disulfide bridge were investigated withthe combined use of 1H NMR and molecularmodelling. Although two native-like reverse turns wereobserved, formation of -sheet could not beevidenced in the one disulfide analogue, while themotif has been shown to be present in a foldingintermediate with two native disulfide bridges (9-21and 15-27). These results suggest that the structuralmotif requires stabilisation by two disulfide bridges  相似文献   

11.
The rat renal Na/P i cotransporter type IIa (rat NaPi IIa) is a 637 amino acid protein containing 12 cysteine residues. We examined the effect of different cysteine modifying methanethiosulfonate (MTS)-reagents and the disulfide bond reducing agent tris(2-carboxyethyl)phosphine (TCEP) on the transport activity of wild-type and 12 single cysteine substitution mutants of rat NaPi IIa expressed in Xenopus laevis oocytes. The transport activity of the wild-type protein was resistant to three membrane impermeant MTS-reagents (MTSEA, MTSET and MTSES). In contrast, membrane permeant methyl methanethiosulfonate (MMTS) and TCEP inhibited the transport activity of both the wild-type, as well as all the single mutant proteins. This indicated the existence of more than one functionally important cysteine residue, not accessible extracellularly, and at least 2 disulfide bridges. To identify the disulfide bridges, three double mutants lacking 2 of the 3 cysteine residues predicted to be extracellular in different combinations were examined. This led to the identification of one disulfide bridge between C306 and C334; reconsideration of the topological model predictions suggested a second disulfide bridge between C225 and C520. Evaluation of a fourth double mutant indicated that at least one of two disulfide bridges (C306 and C334; C225 and C520) has to be formed to allow the surface expression of a functional cotransporter. A revised secondary structure is proposed which includes two partially repeated motifs that are connected by disulfide bridges formed between cysteine pairs C306-C334 and C225-C520. Received: 13 December 1999/Revised: 31 March 2000  相似文献   

12.
By degradation with acid protease and thermolysin the five disulfide bridges in toxin B from the venom of the Indian cobra have been localized. Toxin B consists of 71 amino acid residues and the five intramolecular disulfide bridges link half cystine residues 3 and 20, 14 and 41, 26 and 30, 45 and 56, and 57 and 62.  相似文献   

13.
Gurmarin is a 35 amino acid peptide with three disulfide bridges in an inhibitor cystine knot. It is found in the plant Gymnema sylvestre, and has been identified as a sweet taste inhibitor in rodents. In this article we provide an efficient route for the synthesis of gurmarin by a controlled random oxidation strategy. We compared two oxidation procedures to form the three disulfide bridges. In the first, based on random oxidation, reduced gurmarin was synthesized using trityl for cysteine protection, and oxidized for 48h in a Tris-HCl buffer containing cystamine and reduced glutathione to facilitate disulfide scrambling. The second was based on step-wise deprotection followed by oxidation in which the cysteine pairs are orthogonally protected with tert-Butylthio, trityl and acetamidomethyl. To verify that the native gurmarin oxidation product was obtained, thermolysin cleavage was used. Cleavage of random oxidized gurmarin showed two possible disulfide combinations; the native and a non-native gurmarin disulfide isomer. The non-native isomer was therefore synthesized using the orthogonal deprotection-oxidation strategy and the native and the non-native gurmarin isomers were analyzed using UPLC. It was found that the random oxidation procedure leads to native gurmarin in high yield. Thus, the synthetic route was simple and significantly more efficient than previously reported syntheses of gurmarin and other cysteine rich peptides. Importantly, native gurmarin was obtained by random oxidation, which was confirmed by a synthetic approach for the first time.  相似文献   

14.
A series of disulfide bridged peptides were designed as potential inhibitors of protein-protein interactions. Following solid phase synthesis, completely deprotected linear peptides were first oxidized to their disulfide analogs and then transformed into their lanthionine equivalents via a base-assisted reaction in water. Peptides consisting of cystine bridges of length i, i+3, with and without discrimination of the chiral centers, were studied for this transformation. Lanthionine peptides were also obtained directly from the reduced linear peptides under mild alkaline treatment, and the reaction proceeded via disulfide bond formation. The extent of conversion of a disulfide bridge into its lanthionine counterpart varied according to the primary sequence. Product characterization revealed diastereomeric lanthionine formation. The presence of D-amino acids, peptide conformation, and/or position of the cystine bridge are among the factors determining the facility of this reaction. Elimination of the backbone proton beta to the sulfur atom followed by intramolecular thiol Michael addition is the most likely mechanism for this transformation.  相似文献   

15.
Summary A series of disulfide bridged peptides were designed as potential inhibitors of protein-protein interactions. Following solid phase synthesis, completely deprotected linear peptides were first oxidized to their disulfide analogs and then transformed into their lanthionine equivalents via a base-assisted reaction in water. Peptides consisting of cystine bridges of lengthi, i+3, with and without discrimination of the chiral centers, were studied for this transformation. Lanthionine peptides were also obtained directly from the reduced linear peptides under mild alkaline treatment, and the reaction proceeded via disulfide bond formation. The extent of conversion of a disulfide bridge into its lanthionine counterpart varied according to the primary sequence. Product characterization revealed diastereomeric lanthionine formation. The presence of D-amino acids, peptide conformation, and/or position of the cystine bridge are among the factors determining the facility of this reaction. Elimination of the backbone proton beta to the sulfur atom followed by intramolecular thiol Michael addition is the most likely mechanism for this transformation.  相似文献   

16.
The primary structures of four low molecular mass peptides (Bs 6, 8, 10 and 14) from scorpion Buthus sindicus were elucidated via combination of Edman degradation and matrix-assisted laser desorption ionization mass spectrometry. Bs 8 and 14 are cysteine-rich, thermostable peptides composed of 35–36 residues with molecular weights of 3.7 and 3.4 kDa, respectively. These peptides show close sequence homologies (55–78%) with other scorpion chlorotoxin-like short-chain neurotoxins (SCNs) containing four intramolecular disulfide bridges. Despite the sequence variation between these two peptides (37% heterogeneity) their general structural organization is very similar as shown by their clearly related circular dichroism spectra. Furthermore, Bs6 is a minor component, composed of 38 residues (4.1 kDa) containing six half-cystine residues and having close sequence identities (40–80%) with charybdotoxin-like SCNs containing three disulfide bridges. The non-cysteinic, bacic and thermolabile Bs10 is composed of 34 amino acid residues (3.7 kDa), and belongs to a new class of peptides, with no sequence resemblance to any other so far reported sequence isolated from scorpions. Surprisingly, Bs10 shows some limited sequence analogy with oocyte zinc finger proteins. Results of these studies are discussed with respect to their structural similarities within the scorpion LCNs, SCNs and other biologically active peptides.  相似文献   

17.
Synthetic insulin-like growth factor II   总被引:1,自引:0,他引:1  
Human insulin-like growth factor II with 67 amino acid residues and three disulfide bridges has been synthesized by the solid-phase method. Homogeneity of the synthetic product is ascertained by chromatofocusing, high performance liquid chromatography and amino acid analysis. In both radioimmunoassay and radioreceptor assay, the synthetic product is indistinguishable from the natural hormone.  相似文献   

18.
Structure and biological activities of synthetic peptides corresponding to bovine neutrophil beta-defensin BNBD-12, GPLSC(1)GRNGGVC(2)IPIRC(3) PVPMRQIGTC(4) FGRPVKC(5) C(6)RSW with disulfide connectivities C(1)-C(5), C(2)-C(4) and C(3)-C(6) and its variants with one, two and three disulfide bridges have been investigated. Selective protection of cysteine thiols was necessary in the four and six cysteine containing peptides for the formation of disulfide connectivities as observed in BNBD-12. Circular dichroism (CD) spectra indicate that in aqueous medium, only a small fraction of molecules populate turn-like conformations. In the presence of micelles and lipid vesicles, the single, two and three disulfide containing peptides adopt beta-hairpin or beta-sheet structures. Antibacterial activity was observed for all the peptides, irrespective of the number of disulfide bridges or how they were connected. Our results suggest that a rigid beta-sheet structure or the presence of three disulfide bridges does not appear to be stringent requirements for antibacterial activity in beta-defensins.  相似文献   

19.
20.
Defensins, which are small cationic molecules produced by organisms as part of their innate immune response, share a common structural scaffold that is stabilized by three disulfide bridges. Coprisin is a 43-amino acid defensin-like peptide from Copris tripartitus. Here, we report the intramolecular disulfide connectivity of cysteine-rich coprisin, and show that it is the same as in other insect defensins. The disulfide bond pairings of coprisin were determined by combining the enzymatic cleavage and mass analysis. We found that the loss of any single disulfide bond in coprisin eliminated all antibacterial, but not antifungal, activity. Circular dichroism (CD) analysis showed that two disulfide bonds, Cys20-Cys39 and Cys24-Cys41, stabilize coprisin’s α-helical region. Moreover, a BLAST search against UniProtKB database revealed that coprisin’s α-helical region is highly homologous to those of other insect defensins. [BMB Reports 2014; 47(11): 625-630]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号