首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is increasing interest in phytoecdysteroids (PEs) because of their potential role in plant defense against insects. To understand the mechanism regulating their levels in plants, the fluctuation, distribution, and biosynthesis of PE 20-hydroxyecdysone (20E) examined in Achyranthes japonica. The total amount of 20E per individual plant initially remained at a constant level, and increased markedly after the first leaf pair (LP) stage, while the concentration of 20E in a given plant decreased rapidly during vegetative growth. In addition, the incorporation of [2-(14)C]-mevalonic acid into 20E did not differ significantly depending on plant organs and developmental stages, suggesting that biosynthesis of 20E is not restricted to particular organs or growth stages.  相似文献   

2.
3.
Vitamin E comprises four tocopherols and four tocotrienols, collectively termed tocochromanols that play an essential role as antioxidants in humans, animals and photosynthetic organisms and are also believed to play a role in modulation of signal transduction and gene expression pathways. In rice and Populus genome, we have identified 7 and 11 tocochromanol biosynthesis genes, respectively. A detailed study of domain organization and phylogenetic analysis of these genes in rice, Arabidopsis and other plants has revealed the presence of homologous genes. Expression profiling of rice and Populus genes has been done by full-length cDNA and EST-based analysis. In rice, real-time PCR analysis was done to reveal the light-regulated expression pattern. Microarray-based expression analysis in different rice tissues and developmental stages revealed expression of these genes in almost all plant tissues/organs. Under abiotic stress conditions, expression of gene coding for HPPD enzyme, that regulates pathway flux, was also found to be increased. This information is expected to be helpful for further functional characterization of tocochromanol biosynthesis genes in different plant tissues under diverse growth conditions.  相似文献   

4.
5.
Escherichia coli strain BL21 is commonly used as a host strain for protein expression and purification. For structural analysis, proteins are frequently isotopically labeled with deuterium (2H), 13C, or 15N by growing E. coli cultures in a medium containing the appropriate isotope. When large quantities of fully deuterated proteins are required, E. coli is often grown in minimal media with deuterated succinate or acetate as the carbon source because these are less expensive. Despite the widespread use of BL21, we found no data on the effect of different minimal media and carbon sources on BL21 growth. In this study, we assessed the growth behavior of E. coli BL21 in minimal media with different gluconeogenic carbon sources. Though BL21 grew reasonably well on glycerol and pyruvate, it had a prolonged lag-phase on succinate (20 h), acetate (10 h), and fumarate (20 h), attributed to the physiological adaptation of E. coli cells. Wild-type strain NCM3722 (K12) grew well on all the substrates. We also examined the growth of E. coli BL21 in minimal media that differed in their salt composition but not in their source of carbon. The commonly used M9 medium did not support the optimum growth of E. coli BL21 in minimal medium. The addition of ferrous sulphate to M9 medium (otherwise lacking it) increased the growth rate of E. coli cultures and significantly increased their cell density in the stationary phase. An erratum to this article can be found at  相似文献   

6.
Influence of environmental factors on the development of L. taurica on pepper genotypes To our knowledge, the effects of certain environmental factors, as well as those of host genotype on the development of Leveillula taurica on pepper have not been extensively investigated. To study effects of the above factors on the development of this parasite, two Capsicum genotypes (‘Yolo Wonder' and ‘line 815’) have been tested and compared under different light and relative humidity conditions. In vitro, optimal light intensity for spore germination was situated between 20 and 80 μE/m2/s, and for the growth of germ tubes it was 20 μE/m2/s. In vivo, under continous darkness during 20 days, the different organs of the hosts were only slightly affected. Under light conditions, during 20 days after inoculation, the highest infection level on leaves was observed at 20 μE/m2/s, (60 % of leaves) while with the cotyledons it was observed between 20–80 μE/m2/s. Effects of relative humidity on the development of this parasite were also studied on ‘Yolo Wonder’ and ‘line 815′. With relative humidity below 50 %, 60 % of ‘Yolo Wonder’ plants and 33 % of ‘line 815’ were infected. Under conditions of saturated relative humidity, the level of infection was the inverse, i. e. 13 and 55 %, respectively. Moreover, ‘Yolo Wonder’ plants were found more or less susceptible to infection with L. taurica during their different development stages. At the cotyledon stage all plants were infected. After this stage, up to flowering, susceptibility depended on the physiological age of the leaves. First leaves (older leaves) were not infected, while young ones near the apex became progressively susceptible.  相似文献   

7.
The effects of different fertilization regimes on root growth characteristics, nutrient uptake and biomass production of Japanese larch (Larix kampferi Sarg.) and its hybrid larch (L. gmelinii × L. kampferi) seedlings were examined for one growing season. Seedlings were raised in the greenhouse under three fertilizer levels (10, 20, 40 mg N seedling–1 season–1) and two delivery schedules, conventional (C) and exponential (E) for 12 weeks. Root growth, biomass allocation and nutrient loading capacity of seedlings were measured for a 3-week interval. By the end of growing season, seedlings fertilized with low dose conventionally (10C) and exponentially (10E) developed relatively longer root and larger root surface areas than those fertilized at high dose exponential loading (40E). At final harvest, the 40E treated Japanese larch had 134% and 155% more shoot mass as compared with those raised under 20E and 10E treated seedlings, respectively. The seedlings fertilized under 10C and 10E showed a high root mass ratio, while 40E treated seedlings showed a low root mass ratio. These data indicated that different nutrient levels (10 mg, 20 mg and 40 mg) strongly affected root growth characteristics. The same seasonal dose (10 mg) applied exponentially (10E) accumulated more N in seedlings compared to the 10C treatment. Exponential fertilization enhanced an increase in N concentration of the whole plant suggesting exponential delivery schedule is an efficient fertilization technique for greater nutrient uptake of plants. In contrast, N concentration of whole plant was declined for seedlings treated with conventional fertilization due to growth dilution. Late in the growing season, seedlings raised under 40E did not significantly improved dry mass production of root, but nutrient accumulation increased without a concomitant increased in root dry mass production. The result suggests that seedlings fertilized exponentially at medium and high dose rates (20E and 40E) induced luxury nutrient consumption within the plant.  相似文献   

8.
Parthenium hysterophorus L. (Asteraceae) is a weed of national significance in Australia. Among the several arthropod agents introduced into Australia to control populations of P. hysterophorus biologically, Epiblema strenuana Walker (Lepidoptera: Tortricidae) is the most widespread and abundant agent. By intercepting the normal transport mechanisms of P. hysterophorus, the larvae of E. strenuana drain nutrients, other metabolic products, and energy, and place the host plant under intense metabolic stress. In this study, determinations of total non‐structural carbohydrates (TNC) levels and carbon and nitrogen isotope ratios of fixed products in different parts of the plant tissue, including the gall, have been made to establish the function of gall as a sink for the nutrients. Values of δ13C and δ15N in galls were significantly different than those in proximal and distal stems, whereas the TNC levels were insignificant, when measured in the total population of P. hysterophorus, regardless of plant age. However, carbon, nitrogen, and TNC signatures presented significant results, when assayed in different developmental stages of P. hysterophorus. Carbon isotope ratios in galls were consistently more negative than those from the compared plant organs. Nitrogen isotope ratios in galls, on the contrary, were either similar to or less negative than the compared plant organs, especially within a single host‐plant stage population (i.e., either rosette, preflowering, or flowering stage). TNC levels varied within compared plant populations. The stem distal to the gall functioned more efficiently as a nodal channel than the stem proximal to the gall, especially in the translocation of nitrogenous nutrients. Our findings indicate that the gall induced by E. strenuana functions as a sink for the assayed nutrients, although some variations have been observed in the patterns of nutrient mobilization. By creating a sink for the nutrients in the gall, E. strenuana is able to place the overall plant metabolism under stress, and this ability indicates E. strenuana has the necessary potential for use as a biological‐control agent.  相似文献   

9.
10.
Abstract

The capacity of Elodea canadensis to phytofiltrate arsenic species from water was evaluated. Plants were adapted to tap water and supplemented with 15 and 250?µg L?1 of As. Inorganic arsenic species (As III, As V), and organic arsenic compounds: monomethylarsonate (MMA) and dimethylarsinate (DMA) were analyzed. Sampling was carried out at different times after exposure in culture water and plant organs. Plants exposed to 15?µg L?1 of As concentration showed no significant difference on As concentration (95% confidence level) in their organs compared to controls. When plants were exposed to 250?µg L?1 of As concentration, a significant increase of As concentration in plant organs was observed. After 1?h exposure, plants reduce 63.16% the As concentration in the culture water, with a bioaccumulation factor (BF) of 4.3. Under these conditions, E. canadensis accumulate As V in roots and do not translocate it to stems (transfer factor <1). MMA was determined in stems and leaves. E. canadensis effectively phytofiltrate As from tap water of a city located in an arsenic endemic area from concentrations of 36?µg L?1 to undetectable levels (10?ng L?1).  相似文献   

11.
A natural grassland in northeastern China dominated by Leymus chinensis (Trin.) was subject to drought treatments to determine the seasonal dynamics in resource partitioning to shoot and storage organs in response to drought. The growing season was divided into six stages according to the phenology of L. chinensis. Plant samples of L. chinensis were collected at each stage to determine biomass, gross calorific value, relative water content, and key mineral contents of plant parts, including rhizomes, roots, leaves, and stems. Resource partitioning to shoot and storage organs as measured by biomass, gross calorific value, and N, K+, and Na+ contents varied significantly among phenologic stages. Drought treatment (natural precipitation, 50–60 % of field capacity) significantly reduced biomass, gross calorific value, relative water content of shoot, and N and K+ contents in both shoot and storage organs, but it enhanced rhizome : shoot ratio and Na+ content. A negative correlation in biomass, gross calorific value, and K+ and Na+ contents between shoot and storage organs was found throughout the growing season, which may have been accentuated by drought when soil moisture was limited. Our results indicate that resource partitioning to storage plays an important role in regulating plant growth of L. chinensis, especially under drought conditions.  相似文献   

12.
The biomechanical relationship between the ability of a plant organ to resist bending and the extent to which tissues are hydrated is illustrated for the cylindrical leaves of chive (Allium schoenoprasnum var. schoenoprasnum L.). The flexural rigidity (EI), which measures the ability to resist bending, is maximum when leaves are fully turgid and decreases monotonically as a function of water potential (r2 = 0.99). Dehydration results in a reduction in the elastic modulus (E) of leaves. Reductions in E are correlated with geometric distortion in the transverse geometry of leaves which influences their second moment of inertia (I). The traditional theory of elastic stability (developed on the basis of the mechanical behavior of nonbiological systems) is shown to be inadequate to distinguish the behavior of E as plant organs geometrically distort during dehydration. This inadequacy results from the violation of a principal assumption made by the theory (= uniform cross-sectional geometry). A derivation is presented that accommodates the localized geometric distortions in cylindrical plant organs and permits a valid estimate of reductions in E as tissues dehydrate. Based on this derivation, the Young's modulus of chive leaves just before mechanical failure due to buckling is shown to be less than 50% of that calculated for fully turgid leaves.  相似文献   

13.
Three plant growth regulators, paclobutrazol, ancymidol, and decylimidazole, which are putative inhibitors of gibberellin (GA) biosynthesis, were studied to determine their effect on abscisic acid (ABA) biosynthesis in the fungus Cercospora rosicola. All three compounds inhibited ABA biosynthesis, and paclobutrazol was the most effective, inhibiting ABA 33% at 0.1 micromolar concentrations. In studies using (E,E,)-[1-14C] farnesyl pyrophosphate, it was shown that ancymidol blocked biosynthesis prior to farnesyl pyrophosphate (FPP), whereas paclobutrazol and decylimidazole acted after FPP. The three inhibitors did not prevent 4′-oxidation of (2Z,4E)-α-ionylideneacetic acid. C. rosiciola metabolized ancymidol by demethylation to α-cyclopropyl-α-(p-hydroxyphenyl)-5-pyrimidine methyl alcohol. Paclobutrazol was not metabolized by the fungus. Information that these plant growth regulators inhibit ABA as well as GA biosynthesis should prove useful in determining the full range of action of these compounds.  相似文献   

14.
The plasticity of growth and development in response to environmental changes is one of the essential aspects of plant behavior. Cytokinins play an important role as signaling molecules in the long-distance communication between organs in systemic growth regulation in response to nitrogen. The spatial distribution of the expression sites of cytokinin biosynthesis genes leads to structural differences in the molecular species transported through the xylem and phloem, giving root-borne trans-hydroxylated cytokinins, namely trans-zeatin (tZ) type, a specialized efficacy in regulating shoot growth. Furthermore, root-to-shoot translocation via the xylem, tZ, and its precursor, the tZ riboside, controls different sets of shoot growth traits to fine-tune shoot growth in response to nitrogen availability. In addition to nitrogen, photosynthetically generated sugars positively regulate de novo cytokinin biosynthesis in the roots, and contribute to plant growth under elevated CO2 conditions. In shoot-to-root signaling, cytokinins also play a role in the regulation of nutrient acquisition and root system growth in cooperation with other types of signaling molecules, such as C-TERMINALLY ENCODED PEPTIDE DOWNSTREAMs. As cytokinin is a key regulator for the maintenance of shoot apical meristem, deepening our understanding of the regulatory mechanisms of cytokinin biosynthesis and transport in response to nitrogen is important not only for basic comprehension of plant growth, but also to ensure the stability of agricultural production.  相似文献   

15.
  • The effects of biological soil crusts (BSC) on vascular plant growth can be positive, neutral or negative, and little information is available on the impacts of different BSC successional stages on vascular plant population dynamics.
  • We analysed seedling emergence, survival, plant growth and reproduction in response to different BSC successional stages (i.e. habitats: bare soil, cyanobacteria, lichen and moss crusts) in natural populations of Echinops gmelinii Turcz. in the Tengger Desert of northwest China. The winter annual E. gmelinii is a dominant pioneer herb after sand stabilisation.
  • During the early stages of BSC succession, the studied populations of E. gmelinii were characterised by high density, plant growth and fecundity. As the BSC succession proceeded beyond moss crusts, the fecundity decreased sharply, which limited seedling recruitment. Differences in seedling survival among the successional stages were not evident, indicating that BSC have little effect on survival in arid desert regions. Moreover, E. gmelinii biomass allocation exhibited low plasticity, and only reproductive allocation was sensitive to the various habitats. Our results further suggest that the negative effects of BSC succession on population dynamics are primarily driven by increasing topsoil water‐holding capacity and decreasing rain water infiltration into deeper soil.
  • We conclude that BSC succession drives population dynamics of E. gmelinii, primarily via its effect on soil moisture. The primary cause for E. gmelinii population decline during the moss‐dominated stage of BSC succession is decreased fecundity of individual plants, with declining seed mass possibly reducing the success of seedling establishment.
  相似文献   

16.
17.

Plant cell and tissue cultures are considered as a source of valuable secondary metabolites but usually produce insufficient level of the compounds, which is the limiting factor for their application in biotechnology. We obtained 18 callus cell cultures from different organs of wild grape Vitis amurensis Rupr. collected at different seasons and analyzed stilbene accumulation in combination with calli growth parameters. This analysis showed that temporal and tissue origin of the calli affected the rate of stilbene biosynthesis. Stem-derived calli accumulated higher stilbene levels and exhibited a higher expression of phenylalanine ammonia-lyase (PAL) and stilbene synthase (STS) genes than calli derived from the leaves and petioles. The highest content of stilbenes was detected in the calli initiated from grapevine stems collected in the autumn. In general, all “autumn” cell cultures contained more than 2 mg g??1 dry wt (up to 11 mg g??1 dry wt) and exhibited high PAL and STS genes expression in comparison with the calli initiated in the summer. The content of stilbenes in the “autumn” cell cultures were comparable to the highest stilbene contents detected in other plant sources described in the literature. Thus, selecting the most optimal explant source for cell culture establishment could be an effective approach towards developing plant cell cultures producing high stilbene levels.

  相似文献   

18.
Batatasin‐III (3,3‐dihydroxy‐5‐methoxybibenzyl) is a phenolic compound associated with the allelopathic effect of the evergreen dwarf shrub Empetrum nigrum, and has been referred to as the causal factor for the species being successful in dominating extensive ecosystems. Yet, only a few plant species have been tested for their response to batatasin‐III, and little is known about whether environmental factors modify this allelopathic effect. In this study, we tested the inhibitory effect of purified batatasin‐III through bioassays on 24 vascular plant species and, for certain species, we tested if this effect depended on growth substrate (mineral vs organic substrate), pH, and fertilization. Moreover, we tested if batatasin‐III predicted the allelopathic effect of E. nigrum by analyzing the inhibitory effect of E. nigrum leaves and humus in relation to their batatasin‐III content. Our results confirmed batatasin‐III as a stable compound capable of inhibiting germination and/or mean root elongation in all of the tested species, but this effect was modified by growth substrate. Surprisingly, the measured batatasin‐III content of E. nigrum leaves (mean value 19.7 ± 10.8 (SE) mg g?1) and humus (mean value of 1 ± 1.5 (SE) μg g?1) did not predict the inhibitory effect on mean root elongation. Although batatasin‐III was found to be phytotoxic to all the tested species, we conclude that this substance alone should not be used as a proxy for the allelopathic effect of E. nigrum.  相似文献   

19.
In order to study the species composition of endophytes from wheat healthy plants in Buenos Aires Province (Argentina) and to determine their infection frequencies from leaves, stems, glumes and grains, wheat plants were collected from five cultivars at five growth stages from crop emergence to harvest. A total of 1,750 plant segments (leaves, stems, glumes and grains) were processed from the five wheat cultivars at five growth stages, and 722 isolates of endophytic fungi recovered were identified as 30 fungal genera. Alternaria alternata, Cladosporium herbarum, Epicoccum nigrum, Cryptococcus sp., Rhodotorula rubra, Penicillium sp. and Fusarium graminearum were the fungi that showed the highest colonization frequency (CF%) in all the tissues and organs analysed. The number of taxa isolated was greater in the leaves than those in the other organs analysed.  相似文献   

20.
Accelerating rhizome growth is crucial to enhancing propagule production in rhubarb (Rheum rhabarbarum L.) because the crop is propagated through rhizome divisions. This can be achieved through manipulating source-sink activity. This study tested the hypothesis that synthetic plant growth retardants Prohexadione-Ca and CCC enhance rhizome growth in rhubarb. Two different concentrations of these plant growth retardants and GA3 (positive control) were foliarly applied on the cultivar German Wine at three stages of shoot growth under greenhouse conditions. Both Prohexadione-Ca and CCC favorably enhanced rhizome growth through suppressing shoot growth. CCC at 3000 mg L−1 produced the best results and the effect was apparent when applied at 12 weeks after shoot emergence. The rhizome diameter, fresh weight, and the number of viable buds were enhanced significantly in plants sprayed with CCC 3000 mg L−1. Both Prohexadione-Ca and CCC were equally effective in enhancing dry mass and starch allocation preferentially toward the rhizome. Prohexadione-Ca- and CCC-induced rhizome growth enhancement could possibly be due to their known role as GA biosynthesis inhibitors or through increasing photosynthetic efficiency and preferentially reallocating carbohydrates to the rhizome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号