首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The induction of α-amylase synthesis in barley aleurone by cyclic 3′,5′-adenosine monophosphate or GA3 was inhibited by abscisic acid. The concentration of ABA required to inhibit α-amylase induction by the cyclic nucleotide in the extract was one-fiftieth to one hundredth of that required for GA3-induced α-amylase. It is concluded that the effects of ABA on GA3 and cyclic nucleotide induced α-amylase synthesis in the aleurone are independent and indirect.  相似文献   

2.
《Plant science》1988,55(3):185-190
The induction of α-amylase and acid phosphatase by gibberellic acid (GA3) was significantly higher (2–4-fold) in embryoless half-seeds of wheat than that observed in the excised aleurones. Addition of endosperm extract to excised aleurones enhanced the stimulatory effect of GA3 on amylase activity by approximately 2-fold. Substitution of endosperm extract by 19 amino acids in GA3-treated aleurones also brought about a 2–2.5-fold stimulation of α-amylase activity. Subsequent studies revealed that the addition of seven non-polar amino acids (0.5 mM each) was sufficient for the enhanced induction of α-amylase (1.8–2.5-fold) in GA3-treated aleurones. A similatory effect of endosperm extract and amino acids on acid phosphatase activity was observed in GA3-treated wheat aleurones. These observations are of physiological significance since an increased pool of free amino acids (5-fold) was also witnessed in the incubation medium of GA3-treated half-seeds in comparison to the hormone-treated aleurones. The relative abundance of free amino acids in half-seed seems vital for the maximal induction of α-amylase and acid phosphatase. Thus, the presence of endosperm tissue associated with the aleurone layers is crucial for enhanced rate of production of GA3-induced α-amylase and acid phosphatase in the wheat system.  相似文献   

3.
T J Mozer 《Cell》1980,20(2):479-485
The patterns of protein synthesis in barley aleurone layers treated with gibberellic acid (GA3) and abscisic acid (ABA) are compared with the patterns observed in wheat germ in vitro translation assays directed by RNA isolated from similarly treated layers. When used alone, GA3 and ABA both induce the formation of new translatable mRNAs and cause new proteins to be synthesized. The effects of GA3 are more dramatic than those of ABA. In GA3-treated tissues, overall protein synthesis is redirected to produce large quantities of α-amylase and a few other GA3-induced proteins, while other protein synthesis is reduced or stopped. Large amounts of new translatable mRNA for α-amylase are also induced such that the dominant in vitro translation product is α-amylase. These changes are blocked by the simultaneous addition of ABA to the tissue. In GA3 plus ABA-treated layers, few changes in protein synthesis in vivo are observed when compared to protein synthesis in untreated tissue, although the induction of mRNA for α-amylase and the other GA3-induced mRNAs does occur. This indicates that ABA does not interfere with GA3 induction of translatable mRNAs but prevents the translation of these mRNAs in vivo. Thus ABA and potentially GA3 regulate the translation of proteins in vivo in barley aleurone layers.  相似文献   

4.
The activity of α-analyses in various plant organs was examined and the relation- ship between the enzyme activity and the leaf sheath elongation of dwarf mutants of maize was investigated. It has been shown that α-amylase exists in various plant organs. Especially high activity was detected in the bean hypocotyl. The regional activity of a-amylase in the epicotyl of the pea and the hypocotyl of the morning glory was examined. Higher activity was observed in the regions closer to the cotyledons. In the first leaf sheath of d5 mutants of maize, GA3-treatment resulted in the promotion of α-amylase activity, and there was a parallelism between GA3-induced elongation and α-amylase activity. Removal of the endosperm from seedlings did not influence the GA3-indnced elongation of the leaf sheath or the promotion of α-amylase activity. From these results it is concluded that at least some of the α-amylase is actually formed in the leaf sheath, and that there exists a distinct parallelism between the GA3-induced promotion of enzyme activity and leaf sheath elongation.  相似文献   

5.
GA3-treatment of dwarf maize seedlings resulted in the elongation of the leaf sheath and also an increase in α-amylase activity. Excised leaf sheaths did not respond to GA3 in leaf shealh length and α-amylase activity. Increase in the enzyme activity is always accompanied by an increase in the length of the leaf sheath. α-Amylase activity gradually increased as the growth of the first leaf proceeded, and a parallelism was found between the length of the leaf sheath and the enzyme activity, suggesting that the degree, of the enzyme activity depends on the length of the leaf sheath. On the other hand, IAA did not affect α-amylase activity while it promoted leaf sheath elongation. This suggests that elongation per se is not associated with the increase in α-amylase activity and that the enzyme-promoting effect is specific to gibberellin. Higher α-amylase activity and lower content of reducing sugars were detected in the older tissue of the leaf sheath, that is, in the upper half. This was the same for GAlrealed seedlings. The amount of reducing sugars was less in GA3-trealcd seedlings. Oxygen-uptake of the leaf sheath was higher in the upper half in both controls and GA3-treated seedlings. It was slightly higher in the latter than in the former. From these results it was discussed 1o conclude that the processes of the GA3-induced elongation and increase in α-amylase activity of the leaf sheath are independent of one another.  相似文献   

6.
Aleurone layers, with testa attached, were prepared from degermed, decorticated barley with the aid of a fungal enzyme preparation. The preparations appeared intact under the scanning electron microscope. By using antibiotics only in an early stage preparations were obtained uncontaminated by micro-organisms and which, when incubated under optimal conditions with gibberellic acid, GA3, produced near-maximal amounts of α-amylase. The enzyme accumulated in the tissue before it was released into the incubation medium. Daily replacement of the incubation medium, containing GA3, depressed the quantity of α-amylase produced. α-Amylase was also produced in response to gibberellins GA1, GA4 and GA7 and, to a much lesser extent, helminthosporol and helminthosporic acid. A range of other substances, reported elsewhere to induce α-amylase formation, failed to do so in these trials. At some concentrations, glutamine marginally enhanced the quantity of enzyme formed during prolonged incubations. It is confirmed that α-glucosidase occurs in the aleurone layer and embryo of ungerminated barley, and increases in amount during germination. GA3 is shown to enhance this increase. When embryos arc burnt, to prevent gibberellin formation, no rise in α-glucosidase levels occurs unless GA3 is supplied to the grains. As the activity of α-glucosidase and other enzymes have been determined as ‘α-amylase’ by some assay methods, their alterations in activity in response to GA3 necessitates a re-evaluation of the evidence for de novo) synthesis of α-amylase in aleurone tissue.  相似文献   

7.
The aleurone of RB-3 shrunken-2 (sh2) maize kernels is deficient in α-amylase activity during germination, but exogenous applications of gibberellic acid (GA3) (0.001–10 μm ) induced low levels of activity. The highest activity was measured in the aleurone of kernels treated with 10 μm GA3 (14,600 ± 945 units), but was lower than untreated Starchy (Su) aleurone tissues (35,280 ± 5,010 units). On isoelectric focusing gels, no α-amylase isozymes were detected in the untreated sh2 aleurone using starch zymograms or immunoblots, but the 1.0 and 10 μm mm GA3 treatments induced nearly all the isozymes (eight to ten) present in the Su aleurone. There was a very low level of α-amylase mRNA in the untreated sh2 aleurone, an intermediate level in the 1.0 μm GA3-treated sh2 aleurone, and the highest level in the untreated Su aleurone. On the confocal microscope, the 1.0 μm GA3-treated aleurone cells had enhanced levels of cytoplasmic membranes and RNA compared to untreated sh2 aleurone cells. The 1.0 μm GA3 treatment also induced shoot elongation in the sh2 seedlings. The data demonstrate that the sh2 aleurone is deficient in its function to produce α-amylases, and exogenous GA3 can partially restore cell function in the sh2 kernels.  相似文献   

8.
The de novo synthesis of α-amylase in barley endosperm and isolated aleurone layers is induced by 3′,5′-cyclic purine mononucleotides and gibberellic acid. The induction of α-amylase by cyclic purine mononucleotides is prevented by 2,4-DNP, inhibitors of RNA and protein syntheses, CCC, AMO-1618 and phosfon. The induction of α-amylase formation by 3′,5′-cyclic purine mononucleotides, but not by gibberellic acid, is also blocked by inhibitors of DNA synthesis. Extracts from cyclic AMP-treated endosperm halves exhibit a characteristic gibberellin-like activity which is detectable within 12 hours from the addition of the cyclic AMP. On paper chromatograms this gibberellin-like activity is located at the Rf typical for GA3. Its formation is prevented by inhibitors of DNA synthesis, CCC and AMO-1618. Glucose inhibits the formation of α-amylase induced by gibberellic acid. Glucose has no effect on the cAMP-induced gibberellin biosynthesis. The evidence shows that the cyclic purine mononucleotides induce DNA synthesis, which results in gibberellin biosynthesis, which in turn activates the synthesis of α-amylase.  相似文献   

9.
Twenty-nine mercaptotriazinone derivatives were synthesized and their plant growth-promoting activities were examined by the rice (Oryza sativa) seedling test in the presence or absence of gibberellic acid (GA3). For high activity in promoting the GA3-induced shoot elongation, an isopropyl or an appropriately substituted phenyl group, a hydrogen atom and a lower alkyl thio group were required in the 1-, 3-and 4-positions, respectively, of the 1,3,5-triazine-2,6-dione structure. In more detailed experiments, 4-methylthio-1-(p-tolyl)-s-triazine-2,6(1H, 3H)-dione, one of the most potent mercaptotriazinones, was found to synergistically promote the GA3-induced elongation of the first and second leaves of rice seedlings. Several mercaptotriazinone derivatives, active or inactive, in the rice seedling test were examined by the radish (Raphanus sativus) leaf disk expansion test, but all of them were completely inactive. Structure-activity relationships of mercaptotriazinone derivatives are discussed in relation to those of the corresponding alkoxytriazinone derivatives.  相似文献   

10.
Stimulation of α-amylase activity was observed in Porteresia coarctata immature seeds (20-day-old) when de-embryonated prewashed half seeds were incubated in media containing gibberellic acid (GA3, 10?5M). No such activity was observed in mature seeds even when GA3 concentration was increased up to five fold. ABA suppressed the GA3 enhanced α-amylase synthesis up to nearly 70% in the immature seeds. Absence of this enzyme activity in mature seeds may be due to high levels of ABA. The immature aleurone showed a 23 kD polypeptide induced by ABA.  相似文献   

11.
The effects of the addition and withdrawal of gibberellic acid (GA3) and Ca2+ on enzyme synthesis and secretion by barley (Hordeum vulgare L. cv. Himalaya) aleurone layers were studied. Incubation of layers in GA3 plus Ca2+ affects the total amount of secreted α-amylase (EC 3.2.1.1) and acid phosphatase (EC 3.1.3.2) by promoting the appearance of different isoenzymic forms of these enzymes. The release of α-amylase isoenzymes 1–4 in response to GA3 plus Ca2+ has a lag of 6 h. When layers are incubated in GA3 alone for 6 h prior to the addition of Ca2+, isoenzymes 1–4 appear in the medium after only 30 min. When the addition of Ca2+ to layers pretreated in GA3 is delayed beyond 12 h, its effectiveness in stimulating the synthesis and release of isoenzymes 3 and 4 is diminished. After 35 h of preincubation in GA3, addition of Ca2+ will not stimulate synthesis of α-amylase isoenzymes 3 and 4. Aleurone layers preincubated for 6 h in GA3 will respond to Ca2+ when the GA3 is withdrawn from the incubation medium by producing α-amylase isoenzymes 1–4. The converse is not the case, however, since layers preincubated in Ca2+ for 6 h will not produce all isoenzymes of α-amylase when subsequently incubated in GA3. The Ca2+-stimulated release of α-amylase from GA3 pre-treated layers is dependent on the time of incubation in Ca2+ and the concentration of the ion. The response to Ca2+ is temperature-dependent, and other divalent cations such as Mg2+ cannot substitute for Ca2+. We conclude that Ca2+ influences α-amylase release by influencing events at the biochemical level.  相似文献   

12.
During germination the aleurone layer of barley grains becomes progressively less able to form more α-amylase in response to a dose of gibberellic acid (GA3). This decline appears to be linked to the presence of a growing embryo. In whole grains the embryo ‘modulates’ the response (α-amylase formation) to controlled external applications of GA3 in a dose-dependent manner. Sugars, and some other metabolites, repress α-amylase formation in transected grains, apparently by reducing levels of endogenously produced gibberellins. This effect is partly, but not completely, reversed by additions of GA3. External applications of GA3 augment the levels of several gibberellin fractions within the grain. The nature of the gibberellin material remaining on the surface of the grains alters with time. Grains treated with GA3 contain a conjugate of low biological activity, possibly a glycoside, that is hydrolysed by a mixed glycosidase preparation to release a biologically-active gibberell in resembling GA3.  相似文献   

13.
Lunularic acid (LA) inhibited not only the germination and the growth of cress and lettuce at 1 mM but also the gibberellic acid (GA3)-induced α-amylase induction in embryoless barley seeds at 120 μM, which was recognized as a specific activity of abscisic acid (ABA). Moreover LA and ABA equally inhibited the growth of Lunularia cruciata A18 strain callus at 40 and 120 μM. A computational analysis revealed that the stable conformers of LA could be superimposed on the stable ABA conformers. In addition, the antibody raised against the conjugate of C1-ABA-bovine serum albumin (ABA-BSA) reacted with LA-horse-radish peroxidase (LA-HRP) conjugate as well as ABA-HRP conjugate, apparently. These results can explain why LA has ABA-like activity in higher plants. Moreover the results suggest that LA and ABA bind to the same receptor in higher plants.  相似文献   

14.
The role of endogenous gibberellin A1 (GA1) in the induction of -amylase activity was investigated during germination of rice (Oryza sativa L.) seeds. The level of endogenous GA1 and the -amylase activity in the seeds of normal rice, cv. Nipponbare, increased simultaneously from 3 days after the imbibition of water. The -amylase activities in the dwarf rice, cv. Waito-C and Tan-ginbozu, were less than that in the normal rice. The level of endogenous GA1 and -amylase activity were decreased in proportion to the concentration of a growth retardant, uniconazole. The retardation in -amylase activity caused by the treatment of uniconazole was recovered by the application of exogenous GA1. These results indicate that the endogenous GA1 biosynthesized de novo regulates -amylase production in germinating rice seeds.Abbreviations GA(s) gibberellin(s) - ABA abscisic acid - AE fraction acidic ethyl acetate-soluble fraction - HPLC high performance liquid chromatography - R t retention time - GC-SIM gas chromatography-selected ion monitoring  相似文献   

15.
Yorkstar wheat, grown in New York State, has a high percentage (10-11) of grains without embryos. The embryoless grains have viable aleurone layers and show no sign of injury. These grains are able to support α-amylase synthesis only in the presence of gibberellin A3 (GA3). In the absence of GA3 some protein synthesis occurs in embryoless grains during the early hours of soaking, indicating that such activity occurs prior to and independent of GA3 induction of α-amylase. The level of β-amylase on a dry weight basis is the same in embryoless and normal grains and decreases with time of soaking. In the presence of GA3, β-amylase decreases at a slower rate. Isoenzymes of α-amylase from GA3-treated embryoless and normal grains show quantitative as well as qualitative differences. Cycloheximide (60 μg/ml) completely inhibits the synthesis of α-amylase by embryoless grains. Of the RNA synthesis inhibitors, actinomycin D (60 μg/ml) was ineffective while 6-methylpurine (60 μg/ml) gave 65% inhibition without decreasing the number of isoenzymes.  相似文献   

16.
Using sensitive and selective immunological assays we have shown that in germinating caryopses of Hordeum vulgare L. cv. Himalaya, the level of gibberellin A4 (GA4) rises approximately 18-to 20-fold shortly (2–4 h) before -amylase activity increases. Gibberellin A4 is the predominant immunoreactive gibberelin during these developmental stages and reaches a peak amount of approximately 9 pmol per caryopsis about 48 h after imbibition. Isolated aleurone layers produce GA4 in the presence of an exogenous gibberellin, such as GA1, which is not a biosynthetic precursor for GA4. Experiments with inhibitors of gibberellin biosynthesis indicate that gibberellin synthesis is required in this tissue for the induction of -amylase. The inductive effect of exogenously applied GA1 is indirect and appears to be mediated by GA4. Embryos form predominantly GA1; however, very little of this material is released by isolated embryos into the incubation medium. The results presented make it unlikely that the role of the embryo in the process of -amylase induction in aleurone layers is to provide gibberellins or gibberellin precursors.Abbreviations ABA abscisic acid - GA gibberellin - GA3 gibberellic acid - RIA radioimmunoassay - TLC thin-layer chromatography  相似文献   

17.
Carboxypeptidase and protease activities of hormone-treated barley (Hordeum vulgare cv Himalaya) aleurone layers were investigated using the substrates N-carbobenzoxy-Ala-Phe and hemoglobin. A differential effect of gibberellic acid (GA3) on these activities was observed. The carboxypeptidase activity develops in the aleurone layers during imbibition without the addition of hormone, while the release of this enzyme to the incubation medium is enhanced by GA3. In contrast, GA3 is required for both the production of protease activity in the aleurone layer and its secretion. The time course for development of protease activity in response to GA3 is similar to that observed for α-amylase. Treating aleurone layers with both GA3 and abscisic acid prevents all the GA3 effects described above. Carboxypeptidase activity is maximal between pH 5 and 6, and is inhibited by diisopropylfluorophosphate and p-hydroxymercuribenzoate. We have observed three protease activities against hemoglobin which differ in charge but are all 37 kilodaltons in size on sodium dodecyl sulfate polyacrylamide gels. The activity of the proteases can be inhibited by sulfhydryl protease inhibitors, such as bromate and leupeptin, yet is enhanced by 2-fold with 2-mercaptoethanol. In addition, these enzymes appear to be active against the wheat and barley storage proteins, gliadin and hordein, respectively. On the basis of these characteristics and the time course of GA3 response, it is concluded that the proteases represent the GA3-induced, de novo synthesized proteases that are mainly responsible for the degradation of endosperm storage proteins.  相似文献   

18.
19.
Lin PP 《Plant physiology》1984,74(4):975-983
Polyamine metabolism and its relation to the induction of α-amylase formation in the aleurone layers of barley seeds (Hordeum vulgare cv Himalaya) in response to gibberellic acid (GA3) has been investigated. A high-performance liquid chromatographic system has been employed for qualitative and quantitative analyses of putrescine (Put), cadaverine (Cad), spermidine (Spd), spermine (Spm), and agmatine (Agm).

Active polyamine metabolism occurs in the aleurone cells of deembryonate barley half seeds during imbibition. The aleurone layers isolated from fully imbibed half seeds contain about 880 nanomoles of Put, 920 nanomoles of Spd, and 610 nanomoles of Spm as free form per gram tissue dry weight while the levels of Cad and Agm are relatively low. The polyamine levels do not change significantly in the aleurone layers in response to added GA3 (1.5 micromolar) during the 8-hour lag period of the growth substance-induced formation of α-amylase. Also, the polyamine levels are not altered by the presence of abscisic acid (3 micromolar) which inhibits the enzyme induction by GA3. Kinetic studies show that both applied [U-14C]ornithine and [U-14C]arginine are primarily incorporated into Put during 2 hours of incubation, but the incorporation is not significantly affected by added GA3. Additionally, added GA3 does not affect the uptake and turnover of [1,4-14C]Put, nor does it affect the conversion of Put → Spd or Spd → Spm. Treatment of the aleurone layers with GA3 for 2 hours results in no significant changes in the total activities or the specific activities of ornithine decarboxylase and arginine decarboxylase.

Experiments with polyamine synthesis inhibitors demonstrate that the level of Spd in the aleurone layers could be substantially reduced by the presence of methylglyoxal-bis(guanylhydrazone) (MGBG) during imbibition. MGBG treatment does not affect in vivo incorporation of [8-14C] adenosine into ATP. The lower the level of Spd the less α-amylase formation is induced by added GA3. The reduction of GA3-induced α-amylase formation by MGBG treatment can be either completely or partially overcome by added Spd, depending upon the concentration of MGBG used in the imbibition medium. The results indicate that the early action of GA3, with respect to induction of α-amylase formation in barley aleurone layers, appears to be not on polyamine metabolism. However, polyamines, particularly Spd, may be involved in regulation of the growth substance-dependent enzyme induction.

  相似文献   

20.
The effects of applied gibberellins (GAs), GA1, GA3, GA4 and GA7 with a cytokinin, N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU) and indole-3-acetic acid (IAA) on fruit set, parthenogenesis induction and fruit expansion of a number of Rosaceae species were assessed. These included Japanese pear cv. ‘Akibae’ (self-compatible) and cv. ‘Iwate yamanashi’ (a seedless cultivar). Other Rosaceae species (Pyrus communis, Chaenomeles sinensis, Cydonia oblonga, and Malus pumila) were also investigated. GA4, GA7 and CPPU are very effective in inducing parthenocarpic fruit growth, whereas GA1, GA3 and IAA, have no ability to induce parthenogenesis in Japanese pear. GA4- and GA7-induced parthenocarpic fruit tended to be smaller in size, higher in flesh hardness, and showed advanced fruit ripening in comparison to pollinated fruit and to parthenocarpic fruit induced by CPPU. GA4- and GA7-induced parthenocarpic fruit also had an increased pedicel length and fruit shape index and also showed a slight protrusion of the calyx end. CPPU, GA4 and GA7 alone or combination with uniconazole were also active in inducing parthenogenesis in three other Rosaceae species, although final fruit set was extremely low. GA1 was essentially inactive in promoting fruit expansion unlike the other bioactive GAs, whose effectiveness in promoting fruit cell expansion was as follow: GA4 ≈ GA7 > GA3 > GA1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号