首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plant-growth regulators, indole-3-carboxylic acids, were introduced into N-acyl ethanolamines, and a series of N-acyl O-indolylalkyl ethanolamines were prepared. Their biological activities to regulate rape hypocotyl elongation, cucumber cotyledon expansion and common wheat coleoptile growth were tested. The results indicate that the title compounds inhibited rape hypocotyl elongation, especially the indole-3-propionic acid derivatives, whose bioactivity was better than that of indole-3-acetic acid.  相似文献   

2.
Temperature passively affects biological processes involved in plant growth. Therefore, it is challenging to study the dedicated temperature signalling pathways that orchestrate thermomorphogenesis, a suite of elongation growth-based adaptations that enhance leaf-cooling capacity. We screened a chemical library for compounds that restored hypocotyl elongation in the pif4-2–deficient mutant background at warm temperature conditions in Arabidopsis thaliana to identify modulators of thermomorphogenesis. The small aromatic compound ‘Heatin’, containing 1-iminomethyl-2-naphthol as a pharmacophore, was selected as an enhancer of elongation growth. We show that ARABIDOPSIS ALDEHYDE OXIDASES redundantly contribute to Heatin-mediated hypocotyl elongation. Following a chemical proteomics approach, the members of the NITRILASE1-subfamily of auxin biosynthesis enzymes were identified among the molecular targets of Heatin. Our data reveal that nitrilases are involved in promotion of hypocotyl elongation in response to high temperature and Heatin-mediated hypocotyl elongation requires the NITRILASE1-subfamily members, NIT1 and NIT2. Heatin inhibits NIT1-subfamily enzymatic activity in vitro and the application of Heatin accordingly results in the accumulation of NIT1-subfamily substrate indole-3-acetonitrile in vivo. However, levels of the NIT1-subfamily product, bioactive auxin (indole-3-acetic acid), were also significantly increased. It is likely that the stimulation of hypocotyl elongation by Heatin might be independent of its observed interaction with NITRILASE1-subfamily members. However, nitrilases may contribute to the Heatin response by stimulating indole-3-acetic acid biosynthesis in an indirect way. Heatin and its functional analogues present novel chemical entities for studying auxin biology.  相似文献   

3.
Cytokinins inhibit hypocotyl elongation in darkness but have no obvious effect on hypocotyl length in the light. However, we found that cytokinins do promote hypocotyl elongation in the light when ethylene action is blocked. A 50% increase in Arabidopsis thaliana (L.) Heynh. hypocotyl length was observed in response to N6-benzyladenine (BA) treatment in the presence of Ag+. The level of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid was strongly increased, indicating that ethylene biosynthesis was up-regulated by treatment with cytokinin. Furthermore, the effects of cytokinins on hypocotyl elongation were also tested using a series of mutants in the cascade of the ethylene-signal pathway. In the ethylene-insensitive mutants etr1-3 and ein2-1, cytokinin treatment resulted in hypocotyl lengths comparable to those of wild-type seedlings treated with both Ag+ and BA. A similar phenotypical response to cytokinin was observed when auxin transport was blocked by -naphthylphthalamic acid (NPA). Applied cytokinin largely restored cell elongation in the basal and middle parts of the hypocotyls of NPA-treated seedlings and at the same time abolished the NPA-induced decrease in indole-3-acetic acid levels. Our data support the hypothesis that, in the light, cytokinins interact with the ethylene-signalling pathway and conditionally up-regulate ethylene and auxin synthesis.  相似文献   

4.
Transgenic Arabidopsis thaliana plants constitutively expressing Agrobacterium tumefaciens tryptophan monooxygenase (iaaM) were obtained and characterized. Arabidopsis plants expressing iaaM have up to 4-fold higher levels of free indole-3-acetic acid (IAA) and display increased hypocotyl elongation in the light. This result clearly demonstrates that excess endogenous auxin can promote cell elongation in a whole plant. Interactions of the auxin-overproducing transgenic plants with the phytochrome-deficient hy6-1 and auxin-resistant axrl-3 mutations were also studied. The effects of auxin overproduction on hypocotyl elongation were not additive to the effects of phytochrome deficiency in the hy6-1 mutant, indicating that excess auxin does not counteract factors that limit hypocotyl elongation in hy6-1 seedlings. Auxin-overproducing seedlings are also qualitatively indistinguishable from wild-type controls in their response to red, far-red, and blue light treatments, demonstrating that the effect of excess auxin on hypocotyl elongation is independent of red and blue light-mediated effects. All phenotypic effects of iaaM-mediated auxin overproduction (i.e. increased hypocotyl elongation in the light, severe rosette leaf epinasty, and increased apical dominance) are suppressed by the auxin-resistant axr1-3 mutation. The axr1-3 mutation apparently blocks auxin signal transduction since it does not reduce auxin levels when combined with the auxin-overproducing transgene.  相似文献   

5.
Soybean is an important oilseed crop grown globally. However, two examples of environmental stresses that drastically regulate soybean growth are low light and high-temperature. Emerging evidence suggests a possible interconnection between these two environmental stimuli. Low light and high-temperature as individual factors have been reported to regulate plant hypocotyl elongation. However, their interactive signal effect on soybean growth and development remains largely unclear. Here, we report that gibberellins (GAs) and auxin are required for soybean hypocotyl elongation under low light and high-temperature interaction. Our analysis indicated that low light and high-temperature interaction enhanced the regulation of soybean hypocotyl elongation and that the endogenous GA3, GA7, indole-3-acetic acid (IAA), and indole-3-pyruvate (IPA) contents significantly increased. Again, analysis of the effect of exogenous phytohormones and biosynthesis inhibitors treatments showed that exogenous GA, IAA, and paclobutrazol (PAC), 2, 3, 5,-triiodobenzoic acid (TIBA) treatments significantly regulated soybean seedlings growth under low light and high-temperature interaction. Further qRT-PCR analysis showed that the expression level of GA biosynthesis pathway genes (GmGA3ox1, GmGA3ox2 and GmGA3) and auxin biosynthesis pathway genes (GmYUCCA3, GmYUCCA5 and GmYUCCA7) significantly increased under (i) low light and high-temperature interaction and (ii) exogenous GA and IAA treatments. Altogether, these observations support the hypothesis that gibberellins and auxin regulate soybean hypocotyl elongation under low light and high-temperature stress interaction.  相似文献   

6.
We examined the physiological effects of brassinosteroids (BRs) on early growth of Arabidopsis. Brassinazole (Brz), a BR biosynthesis inhibitor, was used to elucidate the significance of endogenous BRs. It inhibited growth of roots, hypocotyls, and cotyledonous leaf blades dose-dependently and independent of light conditions. This fact suggests that endogenous BRs are necessary for normal growth of individual organs of Arabidopsis in both photomorphogenetic and skotomorphogenetic programs. Exogenous brassinolide (BL) promoted hypocotyl elongation remarkably in light-grown seedlings. Cytological observation disclosed that BL-induced hypocotyl elongation was achieved through cell enlargement rather than cell division. Furthermore, a serial experiment with hormone inhibitors showed that BL induced hypocotyl elongation not through gibberellin and auxin actions. However, a synergistic relationship of BL with gibberellin A3 (GA3) and indole-3-acetic acid (IAA) was observed on elongation growth in light-grown hypocotyls, even though gibberellins have been reported to be additive to BR action in other plants. Taken together, our results show that BRs play an important role in the juvenile growth of Arabidopsis; moreover, BRs act on light-grown hypocotyl elongation independent of, but cooperatively with, gibberellins and auxin.  相似文献   

7.
During elongation of the Arabidopsis hypocotyl, each cell reacts to light and hormones in a time- and position-dependent manner. Growth in darkness results in the maximal length a wild-type cell can reach. Elongation starts at the base and proceeds in the acropetal direction. Cells in the upper half of the hypocotyl can become the longest of the whole organ. Light strongly inhibits cell elongation all along the hypocotyl, but proportionally more in the upper half. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is known to stimulate hypocotyl elongation in the light. Here we show that this stimulation only occurs in cells of the apical half of the hypocotyl. Moreover, ACC application can partially overcome light inhibition, whereas indole-3-acetic acid (IAA) cannot. On low-nutrient medium (LNM) in the light, elongation is severely reduced as compared to growth on rich medium, and both ACC and IAA can stimulate elongation to the levels reached on a nutrient-rich medium. Furthermore, microtubule orientation was studied in vivo. During elongation in darkness, transverse and longitudinal patterns are clearly related with rates of elongation. In other conditions, except for the association of longitudinally orientated microtubules with growth arrest, microtubule orientation is merely an indicator of developmental age, not of elongation activity. A hypothesis on the relation between microtubules and elongation rate is discussed.  相似文献   

8.
Summary The influence of exogenous potassium hexacyanoferrate (III) (HCF III) on elongation of maize (Zea mays L.) coleoptile segments was investigated. Addition of HCF III led to a strong stimulation of growth both in the presence and absence of indole-3-acetic acid (IAA). The magnitude of growth stimulation was dependent on the presence of IAA, HCF III concentration, incubation time, and phase growth. The reduced form, potassium hexacyanoferrate (II), was without effect on growth. In the presence of HCF III, elongation was suppressed when coleoptile segments were treated with N,N-dicyclohexylcarbodiimide, cycloheximide or atebrine (quinacrine). The addition of HCF III stimulated the IAA-induced proton extrusion, and the e/H+ ratio decreased with incubation time. HCF III also strongly stimulated elongation ofAvena saliva L. coleoptile segments andGlycine max L. hypocotyl segments. These results suggested that a plasma membrane redox system (NADH oxidase type I) may be involved in the regulation of growth through the activity of the plasma membrane-bound ATPase.Abbreviations CH cycloheximide - DCCD N,N-dicyclohexylcarbodiimide - HCF III potassium hexacyanoferrate (III) (potassium ferricyanide) - HCF II potassium hexacyanoferrate (II) (potassium ferrocyanide) - IAA indole-3-acetic acid  相似文献   

9.
The first steps in the biosynthesis of glucosinolates and indole-3-acetic acid (IAA) in oilseed rape (Brassica napus L.) and Chinese cabbage (Brassica campestris ssp. pekinensis) involve the formation of aldoximes. In rape the formation of aldoximes from chain-extended amino acids, for aromatic and aliphatic glucosinolate biosynthesis, is catalysed by microsomal flavin-containing monooxygenases. The formation of indole-3-aldoxime from l-tryptophan, the potential precursor of both indole-3-acetic acid and indolyl-glucosinolates, is catalysed by several microsomal peroxidases. The biosynthesis of glucosinolates and indole-3-acetic acid was shown to be under developmental control in oilseed rape and Chinese cabbage. No monooxygenase activities were detected in cotyledons or old leaves of either species. The highest monooxygenase activities were found in young expanding leaves; as the leaves reached full expansion and matured the activities decreased rapidly. The indole-aldoxime-forming activity was found in all of the tissues analysed, but there was also a clear decrease in foliar activity with maturity in leaves of rape and Chinese cabbage. Partial characterisation of the Chinese cabbage monooxygenases showed that they have essentially identical properties to the previously characterised rape enzymes; they are not cytochrome P450-type enzymes, but resemble flavin-containing monooxygenases. No monooxygenase inhibitors were detected in microsomes prepared from either cotyledons or old leaves.Abbreviations DHMet dihomomethionine - FMO flavin-containing monooxygenase - HPhe homophenylalanine - IAA indole-3-acetic acid - l-Phe l-phenylalanine - l-Trp l-tryptophan - MO monooxygenase - IAALD indole-3-acetaldehyde - IAOX indole-3-aldoxime - THMet trihomomethionine  相似文献   

10.
An efficient protocol for spinach (Spinacia oleracea L.) plant regeneration from hypocotyl and root segments was established. When the sub-apical hypocotyl and tip-free root segments were cultured on Murashige & Skoog (1962)-based medium containing high concentrations of indole-3-acetic acid (85.62 M) and gibberellic acid (100 M), more than 75% and 90% of the hypocotyl and root explants, respectively, formed shoots. After elongation, more than 92% of the shoots rooted on medium supplemented with 2.85–5.71 M of indole-3-acetic acid. More than 70% of rooted plantlets survived in soil and were fertile. Significant interactions between growth regulator combinations, explant types and environmental conditions on shoot initiation, development and rooting were discussed.Abbreviations BA benzyladenine - BM Murashige & Skoog basal medium - B5 Gamborg et al. medium (1968) - 2,4-d 2,4-dichlorophenoxyacetic acid - 2ip isopentenyladenine - GA3 gibberellic acid - IAA indole-3-acetic acid - MS Murashige & Skoog medium (1962) - NAA naphthaleneacetic acid - HS hypocotyl segments - RSS root segments of seedlings - RSV foot segments of in vitro plantlets  相似文献   

11.
Biochemical changes associated with adventitious shoot regeneration during in vitro culture of hypocotyl explants of Jatropha integerrima were determined. Histological and biochemical studies were undertaken at 7-d intervals, up to four weeks on hypocotyl explants cultured on basal Murashige and Skoog's medium supplemented with 0.5 mg dm-3 N6-benzyladenine and 1.0 mg dm-3 indole-3-butyric acid. Initial cell proliferation occurred within one week of culture; meristemoid differentiation within two to three weeks and shoot development after four weeks. Peak activities of alkaline phosphatase, peroxidase and polyphenol oxidase was observed at day 14 indicating their involvement in the formation of meristematic centers. Protein accumulation and acid phosphatase activity were maximum at day 28.  相似文献   

12.
A product of indole-3-acetic acid (IAA) metabolism having an auxin-like activity has been isolated from liquid cultures of Pseudomonas syringae pv. savastanoi. By spectral data and chemical correlations the compound has been identified as α-N-acetyl-indole-3-acetyl-ε-l-lysine (Ac-IAA-Lys). The IAA-derivative was detected in culture filtrates of oleander strains but not in culture filtrates of olive strains. The physiological effects of Ac-IAA-Lys on hypocotyl elongation in wheat, leaf chlorosis in oleander and bean and the hypertrophic response of potato tuber discs were compared with those of IAA. The results indicated that Ac-IAA-Lys was approximately 60 % less active than IAA.  相似文献   

13.
An in vitro propagation system for Artemisia vulgaris L., a traditional medicinal plant, has been developed. The best organogenic response, including adventitious shoot number and elongation, was obtained when hypocotyl segments were cultured onto MS medium supplemented with 4.54 μM TDZ (N-phenyl-N′-(1,2,3-thidiazol-yl) urea). Up to 28 shoots formed per explant for an optimal duration of exposure of 48 days. Regenerated shoots formed roots when subcultured onto a medium containing 8.56 μM IAA (indole-3-acetic acid). Healthy plantlets were transferred to a garden soil:farmyard soil:sand (2:1:1) mixture for acclimatization, which was successful, and subsequent maturity was achieved under greenhouse conditions over a six-month period. The survival rate of the plantlets varied under acclimatization. The regeneration protocol developed in this study provides a basis for germplasm conservation and for further investigation of medicinally active constituents of A. vulgaris. This optimized protocol has been successfully employed for genetic transformation studies in A. vulgaris, which are currently underway in our laboratory.  相似文献   

14.
Li L  Hou X  Tsuge T  Ding M  Aoyama T  Oka A  Gu H  Zhao Y  Qu LJ 《Plant cell reports》2008,27(3):575-584
We previously reported that Arabidopsis indole-3-acetic acid (IAA)-methyltransferase-1 (IAMT1) catalyzes the conversion of IAA, an essential phytohormone, to methyl-IAA (MeIAA) and that IAMT1 plays an important role in leaf development. Here, we present the possible mechanisms of action of MeIAA in Arabidopsis. We showed that MeIAA was more potent than IAA in the inhibition of hypocotyl elongation and that MeIAA and naphthalene-acetic acid (NAA), but not IAA, rescued the hypocotyl gravitropic defects in dark-grown aux1. However, MeIAA was less potent than IAA in the inhibition of primary root elongation in light-grown seedlings, and could not rescue the agravitropic root phenotype of aux1. MeIAA had a stronger capacity to induce lateral roots than both IAA and NAA and rescued the defective lateral root phenotype of aux1 seedlings. However, its capacity to induce root hairs was weaker than IAA and NAA and did not rescue the defective root hair phenotype of aux1 seedlings. These data indicate that MeIAA is an inactive form of IAA. The different sensitivities to MeIAA among different organs probably resulted from different expression localization and capacities of a putative MeIAA esterase to convert MeIAA to IAA.  相似文献   

15.
In vitro regeneration of Trifolium glomeratum, a leguminous forage species, was attempted through leaf, petiole, cotyledon, hypocotyl, collar and root explants and two media combinations. Root and collar explants showed no callus induction. Medium with 0.05 mg dm−3 α-naphthaleneacetic acid (NAA) and 0.10 mg dm−3 N6-benzyladenine (BA) was more effective for hypocotyl explant whereas cotyledon and petiole explant were more responsive to 5.0 mg dm−3 NAA and 1.0 mg dm−3 BA. Friable, green calli obtained from petiole explant on this medium showed organogenetic potential. Modified root-inducing medium having 0.21 mg dm−3 indole-3-acetic acid and 2.5 % sucrose was successful for root induction and plantlets were successfully transferred to field after hardening and Rhizobium inoculation.  相似文献   

16.
Park WJ 《Planta》1998,207(1):120-124
The effect of epibrassinolide (epiBR) on the growth and gravitropism of hypocotyls was investigated in diageotropica (dgt), a mutant of tomato (Lycopersicon esculentum Mill.). The elongation of (dgt) hypocotyls, which had been reported to be auxin-insensitive, was promoted by increasing concentrations of indole-3-acetic acid (IAA) in the presence of epiBR. α-(p-Chlorophenoxy)isobutyric acid, an inhibitor of auxin action, blocked the enhancement of growth by IAA and epiBR. Time course analysis of IAA-induced dgt hypocotyl elongation in the presence of epiBR revealed typical auxin response kinetics. These results suggest that epiBR restores the auxin responsiveness of dgt hypocotyls with respect to elongation. However, epiBR did not rescue the dgt phenotype with respect to shoot gravitropism. It was therefore concluded that brassinosteroid insensitivity or deficiency is not the primary defect of the dgt mutation. Received: 23 January 1998 / Accepted: 20 June 1998  相似文献   

17.
Brassinosteroid, an analogue of brassinolide, (BR) (2α, 3α, 22β, 23β-tetrahydroxy-24β-methyl-B-homo-7-oxa-5α-cholestan-6-one), was tested in conjunction with indole-3-acetic acid (IAA), naphthaleneacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), indole-3-butyric acid (IBA), indole-3-propionic acid (IPA), indole-3-pyruvic acid (IPyA), indole-3-aldehyde (IAld), indole-3-carbinol (ICB) or tryptophan (TRP) for its effects on ethylene production by etiolated mung bean (Vigna radiata (L.) Rwilcz cv. Berken) hypocotyl segements. The enhancement of ethylene production due to BR was greatest in conjunction with 1 μM IBA, 2,4-D, IAA, or NAA (these increases were 2580, 2070, 890, and 300%, respectively). When increasing concentrations of IBA, 2,4-D, IAA, or NAA were used, there was a decrease in the percentage stimulation by BR. Both IPyA and IPA had different optimal concentrations than the other auxins tested. Their BR-enhanced maximum percentage stimulations (1430 and 1580%) were greatest with 5 μM IPya and 10 μM IPA, respectively. There was a marked reduction in the percentage stimulation by BR with either 100 μM IPyA or IPA. The inactive indoles (IAld, ICB, or TRP) did not synergize with BR at any of the concentrations tested. Four hours following treatment those segments in contact with 1 μM BR with or without the addition of 10 μM IAA began to show a stimulation in ethylene production above the control and this stimulation became greater over the following 20 h. It was necessary for BR to be in continual contact with the tissue to have a stimulatory effect on auxin-induced ethylene production. When segments excised from greater distances below the hypocotyl hook, were treated with either IAA alone or in combination with BR, there was a decrease in ethylene production with increasing distance. There was no effect of hypocotyl length on BR stimulation of auxin-induced ethylene production; however, there was a definite decrease in ethylene production when IAA was applied alone.  相似文献   

18.
Elongation of excised loblolly pine ( Pinus taeda L.) hypocotyls was promoted by indole-3-acetic acid and the fungal metabolite, fusicoccin. Gibberellic acid, kinetin, zeatin, or zeatin-riboside were either without effect or promoted elongation only slightly. The most auxin-responsive tissue was just below the cotyledonary node, and elongation was confined to sections excised from the upper 2 cm of the hypocotyl. Indole-3-acetic acid induced elongation rates in the hypocotyl sections equal to those of intact hypocotyls when the sections were excised from young seedlings. Elongation rates decreased in intact hypocotyls before the excised tissues lost responsiveness to the auxin. Hypocotyl elongation in loblolly pine is discussed in relation to hypocotyl elongation in angiosperm species.  相似文献   

19.
Summary An improved protocol for shoot regeneration from hypocotyl segments of seedlings from open-pollinated seeds of lingonberry (Vaccinium vitis-idaea L.) cultivars, ‘Ida’, ‘Splendor’, and ‘Erntesegen’, and a native clone from Newfoundland was developed. The effect of thidiazuron (TDZ) on adventitious bud and shoot formation from apical, central, and basal segments of the hypocotyl was tested. Highly regenerative callus was obtained from hypocotyl segments on modified Murashige and Skoog (MMS) medium containing 5–10 μM TDZ. A maximum of 10 buds and 12 shoots per apical segment for seedlings of cultivar ‘Ida’ regenerated on MMS containing 10 μM TDZ. Callus and bud regeneration frequency, callus growth, and number of buds and shoots per regenerating explant depended not only on the specific segment of the hypocotyl, but also on parental genotype. Inhibition of shoot elongation by TDZ was overcome by transferring shoot cultures to a shoot proliferation medium containing 1–2 μM zeatin. The optimal concentration of sucrose for shoot elongation was 20 gl−1. Shoots were rooted ex vitro on a 2 peat: 1 perlite (v/v) medium after dipping in 0.8% indole-3-butyric acid, and rooted plants acclimatized readily under greenhouse conditions.  相似文献   

20.
The dependence of morphogenetic processes in the formation of vegetative and generative organs in spring oilseed rape and barley on exogenously applied physiological analogues of auxin: 2,4-D (2,4-dichlorphenoxyacetic acid), NAA (naphthalene-1-acetic acid), TA-12 (1-[2-chloroethoxycarbonyl-methyl]-4-naphthalenesulfonic acid calcium salt) and TA-14 (1-[2-dimethylaminoethoxicarbonylmethyl]naphtalene chlormethylate) were investigated. The experiments were performed with hypocotyl tissue cultures of oilseed rape and barley microspores in vitro. The auxin analogues applied revealed differences of morphogenetic competence in dedifferentiation-redifferentiation processes that occurred in oilseed rape cultures. TA-12 and TA-14 applied together with NAA and BA (6-benzylaminopurine) caused more intensive callus growth in comparison with 2,4-D. Rhizogenesis was induced when 2,4-D was substituted by TA-12. Compound TA-14, unlike TA-12, facilitated the appearance and development of cotyledons in callus tissues. Hower the compounds TA-12 and TA-14 have no positive effect in monocot plant — barly anther culture for callogenesis and regeneration in comparison to indole-3-acetic acid (IAA). TA-14 and TA-12 showed similar but not identical auxin properties and demonstrated high efficiency as modifiers of rape-dicot plant growth and morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号