首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Overexpression of the response regulator EvgA confers an acid-resistant phenotype to exponentially growing Escherichia coli. This acid resistance is partially abolished by deletion of ydeP, yhiE or ydeO, genes induced by EvgA overexpression. Microarray analysis identified two classes of operons (genes). The first class contains seven operons induced by EvgA overexpression in the absence of ydeO, an AraC/XylS regulator gene. The second class contains 12 operons induced by YdeO overexpression. Operons in the second class were induced by EvgA overexpression only in the presence of ydeO. EvgA is likely to directly upregulate operons in the first class, and indirectly upregulate operons in the second class via YdeO. Analysis using the motif-finding program alignace identified an 18 bp inverted repeat motif in six upstream regions of all seven operons directly regulated by EvgA. Gel mobility shift assays showed the specific binding of EvgA to the six sequences. Introduction of mutations into the inverted repeats upstream of ydeP and b1500-ydeO resulted in reduction in EvgA-induced ydeP and ydeO expression and acid resistance. These results suggest that EvgA binds to the inverted repeats and upregulates the downstream genes. Overexpression of YdeP, YdeO and YhiE conferred acid resistance to exponentially growing cells, whereas GadX overexpression did not. Microarray analysis also identified several GadX-activated genes. Several genes induced by overexpression of YdeO and GadX overlapped; however, yhiE was induced only by YdeO. The acid resistance induced by YdeO overexpression was abolished by deletion of yhiE, gadC, slp-yhiF, hdeA or hdeD, genes induced by YdeO overexpression, suggesting that several genes orchestrate YdeO-induced acid resistance. We propose a model of the regulatory network of the acid resistance genes.  相似文献   

5.
6.
7.
Bile salts are prevalent in the mammalian intestine, a natural habitat of Escherichia coli. The bile salts deoxycholate, chenodeoxycholate, ursodeoxycholate, and glycocholate were tested for their effect on induction of 13 specific stress response genes. The most consistently activated E. coli promoters were those for genes micF, osmY, and dinD. MicF and osmY gene products are associated with membrane functions and are responsive to oxidative stress. DinD is induced by DNA damage as part of the SOS response. These results indicate that bile acids, to which E. coli are naturally exposed, induce expression of specific stress response genes, possibly in response to membrane perturbation, oxidative stress, and DNA damage. Altered expression of stress-response genes may also promote interaction of E. coli with cells of the colonic epithelium. Received: 5 March 1999 / Accepted: 2 April 1999  相似文献   

8.
影响大肠杆菌中外源基因表达的因素   总被引:41,自引:1,他引:40  
大肠杆菌已经被广泛地应用于表达各种外源基因,但是,不同的外源基因在表达效率上却有很大的差异,文章综述了影响大肠杆菌中外源基因表达的因素,这将有助于认识大肠杆菌中外源基因表达的规律,以便采取有效的方法提高外源基因在大肠杆菌中的表达效率.  相似文献   

9.
To examine the defence response in Brassica carinata we differentially screened a cDNA library made from CuCl2-treated (Cu) leaves. The sequence of 17 of the 27 cDNA clones examined that showed Cu-induction had a high similarity to defence genes from other plant species. Among other clones that showed higher expression in the Cu leaves were two cDNAs encoding polypeptides of 351 and 250 amino acids, designated BcCJS1 and BcCJAS1. BcCJS1 had similarity to S-adenosyl-l -methionine: salicylic acid carboxyl methyltransferase from Clarkia breweri. However, the enzyme activity was not found in extracts from E. coli expressing BcCJS1. BcCJAS1 did not show extensive similarity to any genes with known function in the databases but it did contain three regions of amino acid sequence that are frequently found in amidotransferases. A third Cu-induced mRNA, Bcp6PGL, showed very high (86%) similarity to a putative 6-phosphogluconolactonase (6PGL) from Arabidopsis thaliana. In addition to Cu induction, BcCJS1 expression was induced by methyl jasmonate (MeJA) and salicylic acid (SA), BcCJAS1 expression by MeJA, SA and abscisic acid and Bcp6PGL expression by MeJA. The expression of all three genes increased after Alternaria brassicae infection. BcCJS1 and BcCJAS1 were induced within 1 h after MeJA- but not until 3 h after SA-treatment. The expression of both genes was systemically induced after infection with a compatible or incompatible fungal pathogen. SA systemically induced only BcCJAS1. The effects of various inhibitors of signalling pathways on expression of the three genes were studied.  相似文献   

10.
An Escherichia coli mutant lacking deoxycytidine triphosphate deaminase (Dcd) activity and an unknown function encoded by a gene designated ior exhibits sensitivity to ionizing radiation whereas dcd mutants themselves are not sensitive. A DNA fragment from an E. coli genomic library that restores the wild type level of UV and gamma ray resistance to this mutant has been cloned in the multicopy vector pBR322. Comparison of its restriction map with the physical map of the E. coli chromosome revealed complete identity to the recBD genes. ior affects ATP-dependent exonuclease activity, suggesting that it is an allele of recB. This mutation alone does not confer sensitivity to UV and gamma radiation, indicating that lack of Dcd activity is also required for expression of radiation sensitivity.  相似文献   

11.
Twenty-nine aminotransferase genes from Pyrococcus horikoshii, Aeropyrum pernix, and Sulfolobus tokodaii were cloned and expressed in Escherichia coli. The expression of several of the genes at 15, 25, or 37 °C resulted in the formation of insoluble protein aggregates. Therefore, we developed a simple method to express these genes into soluble proteins, by cultivating E. coli clones at a higher temperature. Thus, four genes could be expressed efficiently into soluble and active enzymes by cultivating the respective E. coli clones at 46 °C. Subsequently, the method was applied to the expression into soluble proteins of other aminotransferase genes that were derived from nine species of thermophilic microorganisms.  相似文献   

12.
Summary The NADP-dependent glutamate dehydrogenase gene of Klebsiella aerogenes was cloned in E. coli in the expression plasmid pRK9. The cloned gene shows a high level of expression in E. coli in the hybrid plasmid pKG3 and such expression is independent of the vector promoter, as shown by experiments in which the promoter was deleted. Active hybrid GDH hexamers were shown in cell-free extracts of an E. coli strain carrying cloned gdhA genes of both E. coli and K. aerogenes. The nucleotide sequence of the N-terminal coding region of the K. aerogenes gdhA gene was determined and found to be strongly homologous with that of E. coli.Abbreviations GDH glutamate dehydrogenase - PMS phenazine methosulphate - MTT 3-(4,5-Dimethylthiazolyl-2)-2,5-diphenyltetrazolium-bromide - PMSF phenylmethylsulphonylfluoride - SSC standard saline citrate - DTT dithiothreitol - bp base pairs - kbp kilo base pairs - dNTP deoxynucleoside triphosphate  相似文献   

13.
Both Enterococcus faecalis and Escherichia coli can undergo abrupt temperature transitions in nature. E. coli changes the composition of its phospholipid acyl chains in response to shifts growth temperature. This is mediated by a naturally temperature sensitive enzyme, FabF (3-ketoacyl-acyl carrier protein synthase II), that elongates the 16 carbon unsaturated acyl chain palmitoleate to the 18 carbon unsaturated acyl chain, cis-vaccenate. FabF is more active at low temperatures resulting in increased incorporation of cis-vaccenoyl acyl chains into the membrane phospholipids. This response to temperature is an intrinsic property of FabF and does not require increased synthesis of the enzyme. We report that the FabF of the very divergent bacterium, E. faecalis, has properties very similar to E. coli FabF and is responsible for changing E. faecalis membrane phospholipid acyl chain composition in response to temperature. Moreover, expression E. faecalis FabF in an E. colifabF strain restores temperature regulation to the E. coli strain.  相似文献   

14.
Summary Genes uvsX and uvsY of bacteriophage T4 both control genetic recombination and repair of damaged DNA, and their mutant phenotypes bear a striking resemblance to each other. It has been shown recently that the uvsX gene product is analogous to the recA gene product of Escherichia coli (Yonesaki et al. 1985; Yonesaki and Minagawa 1985; Formosa and Alberts 1986), but the function of the uvsY gene is unknown. To obtain further insight into the function of these genes we introduced plasmid-borne copies of the two genes separately or together into E. coli. The uvsX gene rendered recA - cells more resistant to UV and raised the recombination frequency of phage and E. coli, but hampered induction of the prophage and the SOS function of E. coli. The uvsY gene had no detectable function when introduced alone into E. coli but significantly enhanced the function of the uvsX gene when the two plasmid-borne genes were introduced together.  相似文献   

15.
In the present study, we demonstrate that the Escherichia coli–Bacillus megaterium shuttle vector pHIS1522 can be used as a versatile expression vector. Recombinant genes under the control of the xylA promoter are constitutively expressed at a high level in E. coli strains, whereas their expression is strongly induced by the addition of xylose in B. megaterium. The utilization of D ‐xylose is known to be dependent on the xylAB genes in a number of bacteria. For B. megaterium a XylA‐based expression system was established that allows tightly regulated and highly efficient heterologous gene expression. The open reading frame (ORF) of the fluorescent protein turboRFP was cloned under the control of the xylA promoter of B. megaterium in the shuttle vector pHIS1522. Unexpectedly, tRFP expression was not only observed in B. megaterium, but also in E. coli. Based on fluorescence measurements and Western blot analysis, expression was comparable or slightly higher compared with the commonly used pET vectors. Therefore, pHIS1522 can be used as a versatile expression vector in both, B. megaterium and E. coli.  相似文献   

16.
An inducible expression vector, pSH19, which harbors regulatory expression system PnitA-NitR, for streptomycetes was constructed previously. Here, we have modified pSH19 to obtain shuttle vectors for Streptomyces-E. coli by introducing the replication origin of a plasmid for E. coli (ColE1) and an antibiotic-resistant gene. Six inducible shuttle vectors, pESH19cF, pESH19cR, pESH19kF, pESH19kR, pESH19aF, and pESH19aR, for Streptomyces-E. coli, were successfully developed. The stability of these vectors was examined in five different E. coli strains and Streptomyces lividans TK24. The stability test showed that the pSH19-derived shuttle vectors were stable in E. coli Stbl2 and S. lividans TK24. Heterologous expression experiments involving each of the catechol 2,3-dioxygenase, nitrilase, and N-substituted formamide deformylase genes as a reporter gene showed that pESH19cF, pESH19kF, and pESH19aF possess inducible expression ability in S. lividans TK24. Thus, these vectors were found to be useful expression tools for experiments on both Gram-negative and Gram-positive bacterial genes.  相似文献   

17.
A two-parameter statistical model was used to predict the solubility of 96 putative virulence-associated proteins of Flavobacterium psychrophilum (CSF259-93) upon over expression in Escherichia coli. This analysis indicated that 88.5% of the F. psychrophilum proteins would be expressed as insoluble aggregates (inclusion bodies). These solubility predictions were verified experimentally by colony filtration blot for six different F. psychrophilum proteins. A comprehensive analysis of codon usage identified over a dozen codons that are used frequently in F. psychrophilum, but that are rarely used in E. coli. Expression of F. psychrophilum proteins in E. coli was often associated with production of minor molecular weight products, presumably because of the codon usage bias between these two organisms. Expression of recombinant protein in the presence of rare tRNA genes resulted in marginal improvements in the expressed products. Consequently, Vibrio parahaemolyticus was developed as an alternative expression host because its codon usage is similar to F. psychrophilum. A full-length recombinant F. psychrophilum hemolysin was successfully expressed and purified from V. parahaemolyticus in soluble form, whereas this protein was insoluble upon expression in E. coli. We show that V. parahaemolyticus can be used as an alternate heterologous expression system that can remedy challenges associated with expression and production of F. psychrophilum recombinant proteins.  相似文献   

18.
An operon encoding enzymes responsible for degradation of the EPA priority contaminant para‐nitrophenol (PNP) from Pseudomonas sp. ENV2030 contains more genes than would appear to be necessary to mineralize PNP. To determine some necessary genes for PNP degradation, the genes encoding the proposed enzymes in the degradation pathway (pnpADEC) were assembled into a broad‐host‐range, BioBricks‐compatible vector under the control of a constitutive promoter. These were introduced into Escherichia coli DH10b and two Pseudomonas putida strains, one with a knockout of the aromatic transport TtgB and the parent with the native transporter. The engineered strains were assayed for PNP removal. E. coli DH10b harboring several versions of the refactored pathway was able to remove PNP from the medium up to a concentration of 0.2 mM; above which PNP was toxic to E. coli. A strain of P. putida harboring the PNP pathway genes was capable of removing PNP from the medium up to 0.5 mM. When P. putida harboring the native PNP degradation cluster was exposed to PNP, pnpADEC were induced, and the resulting production of β‐ketoadipate from PNP induced expression of its chromosomal degradation pathway (pcaIJF). In contrast, pnpADEC were expressed constitutively from the refactored constructs because none of the regulatory genes found in the native PNP degradation cluster were included. Although P. putida harboring the refactored construct was incapable of growing exclusively on PNP as a carbon source, evidence that the engineered pathway was functional was demonstrated by the induced expression of chromosomal pcaIJF. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

19.
Gene expression system Hsh is developed to increase enzyme production and to decrease the cost in the induction of gene expression in Escherichia coli. The vectors of Hsh system were constructed by combining a synthesized heat-shock promoter with a synthesized terminator and an origin of replication derived from pUC19 in which the expression of foreign genes was regulated by an alternative sigma factor, σ32 of E. coli. In comparison, the Hsh promoter gave a 2.4-fold higher production for xynIII gene encoding a xylanase than existing heat-shock inducible promoter p L, 1.2-fold and 3-fold production for xar gene encoding a arabinosidase than trc and T7 promoter, respectively. The flow-in-heat technique created a rapid rise in temperature for effective induction of gene expression in bioreactor scale.  相似文献   

20.
A pair of bifunctional expression vectors, pBL-WZX and pHY-WZX, for Escherichia coli and Bacillus licheniformis was constructed to express interesting genes in a secretory manner. The vectors contain an expression cassette consisted of the promoter and signal peptide region of B. licheniformis amyL as well as an artificial multiple cloning site and a terminator and utilize kanamycin-resistance and/or tetracycline-resistance for selection in both B. licheniformis and E. coli. Both vectors contain a part of 3′ terminal fragment of B. licheniformis amyL. The 5′-terminal or 3′-terminal fragment of B. licheniformis amyL can cause the integration and amplification of expression cassette in the chromosome of B. licheniformis under a kanamycin-selection pressure. pBL-WZX is an integrational vector while pHY-WZX is free one for B. licheniformis. Both vectors were succeeded in secretory expression of manL in both B. licheniformis and E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号