首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
D-Galactosyl-α-1,3-D-galactopyranose (1) was chemically prepared in a good yield by coupling phenyl 2,3,4,6-tetra-O-benzyl-1-thio-β-D-galactopyranoside (5) or 2,3,4,6-tetra-O-benzyl-α-D-galactopyranosyl bromide (8) with 1,2:5,6-di-O-cyclohexylidene-α-D-galactofuranose (3) with subsequent de-O-benzylation and de-O-cyclohexylidenation of the resulting protected α-1,3-disaccharide.  相似文献   

3.
l-ribose isomerase (L-RI) from Cellulomonas parahominis MB426 can convert l-psicose and d-tagatose to l-allose and d-talose, respectively. Partially purified recombinant L-RI from Escherichia coli JM109 was immobilized on DIAION HPA25L resin and then utilized to produce l-allose and d-talose. Conversion reaction was performed with the reaction mixture containing 10% l-psicose or d-tagatose and immobilized L-RI at 40 °C. At equilibrium state, the yield of l-allose and d-talose was 35.0% and 13.0%, respectively. Immobilized enzyme could convert l-psicose to l-allose without remarkable decrease in the enzyme activity over 7 times use and d-tagatose to d-talose over 37 times use. After separation and concentration, the mixture solution of l-allose and d-talose was concentrated up to 70% and crystallized by keeping at 4 °C. l-Allose and d-talose crystals were collected from the syrup by filtration. The final yield was 23.0% l-allose and 7.30% d-talose that were obtained from l-psicose and d-tagatose, respectively.  相似文献   

4.
This article covers molecular designs to develop several new fluorometric reagents and their applications to increase the sensitivities up to the picomole level using HPLC for the measurement of biomolecules. The methods were designed to demonstrate the physiological activities, for example (1) N-(9-acridinyl)maleimide (NAM) for the measurement of SH, –S–S–, and sulfite such as cysteine, (2) diphenyl-1-pyrenylphosphine (DPPP) for the hydroperoxides in lipids, serum, tissues, and foodstuffs, (3) 9-bromomethylacridine (9-BrMA), (4) 2-(anthracene-2,3-dicarboxylimide)ethyltrifluoromethane sulfonate (AE-OTf) for carboxylic acids, and (5) The chiral fluorometric labelling reagent (S)-( + )-2-tert-butyl-2-methyl-1,3-benzodioxole-4-carboxylic acid (TBMB) to identify the chiralities of amino acids, sugars, and mono- and diacylglycerols.  相似文献   

5.
A novel arseno-sugar was isolated from the brown alga Sargassum thunbergii. Instead of the dimethylarsinoyl group reported for algal arseno-sugars, this has a tri-methylarsonium group, which is borne by arsenobetaine, a ubiquitous organoarsenic compound in marine animals. This may be an intermediate between arseno-sugars and arsenobetaine.  相似文献   

6.
7.
Pyridoxamine (pyridoxine) 5′-phosphate oxidase (EC. 1.4.3.5) has been purified from dry baker’s yeast to an apparent homogeneity on a polyacrylamide disc gel electrophoresis in the presence of 10 µm of phenylmethylsulfonyl fluoride throughout purification.

1) The purified enzyme, obtained as holo-flavoprotein, has a specific activity of 27µmol/mg/hr for pyridoxamine 5′-phosphate at 37°C, and a ratio of pyridoxine 5′-phosphate oxidase to pyridoxamine 5′-phosphate oxidase is approximately 0.25 at a substrate concentration of 285 µm. Km values for both substrates are 18 µm for pyridoxamine 5′-phosphate and 2.7 µm for pyridoxine 5′-phosphate, respectively.

2) The enzyme can easily oxidize pyridoxamine 5′-phosphate, but when pyridoxamine and pyridoxine 5′-phosphate are coexisted in a reaction mixture the enzyme activity is markedly suppressed much beyond the values expected from its high affinity (low Km) and low Vmax for the latter substrate.

3) Optimum temperature for both substrates is approximately 45°C, and optimum pH is near 9 for pyridoxamine 5′-phosphate and 8 for pyridoxine 5′-phosphate.

4) From the data obtained, the mechanism of regulation of this enzyme in production of pyridoxal 5′-phosphate and a reasonable substrate for the enzyme in vivo are discussed.  相似文献   

8.
Two chitinases (Chi-A and Chi-B) purified from Streptomyces sp. J-13-3 had the same molecular weights (31,000) and enzymatic properties (optimum pH and temperature of pH 6.0 and 45°C) but had significantly different isoelectric points (3.9 for Chi-A, 3.5 for Chi-B). Chi-A and -B had identical N-terminal amino acid sequences (ADXAAAWNASSVYTGGGSASYNGHN), similar amino acid compositions, and immunological cross-reactivities. A concomitant decrease of Chi-A and increase of Chi-B was observed in their productions during cultivation.  相似文献   

9.
Polylactic acid is receiving increasing attention as a renewable alternative for conventional petroleum-based plastics. In the present study, we constructed a metabolically-engineered Candida utilis strain that produces L-lactic acid with the highest efficiency yet reported in yeasts. Initially, the gene encoding pyruvate decarboxylase (CuPDC1) was identified, followed by four CuPDC1 disruption events in order to obtain a null mutant that produced little ethanol (a by-product of L-lactic acid). Two copies of the L-lactate dehydrogenase (L-LDH) gene derived from Bos taurus under the control of the CuPDC1 promoter were then integrated into the genome of the CuPdc1-null deletant. The resulting strain produced 103.3 g/l of L-lactic acid from 108.7 g/l of glucose in 33 h, representing a 95.1% conversion. The maximum production rate of L-lactic acid was 4.9 g/l/h. The optical purity of the L-lactic acid was found to be more than 99.9% e.e.  相似文献   

10.
Enzymes that catalyze the conversion of organohalogen compounds have been attracting a great deal of attention, partly because of their possible applications in environmental technology and the chemical industry. We have studied the mechanisms of enzymatic degradation of various organic halo acids. In the reaction of L-2-haloacid dehalogenase and fluoroacetate dehalogenase, the carboxylate group of the catalytic aspartate residue nucleophilically attacked the α-carbon atom of the substrates to displace the halogen atom. In the reaction catalyzed by DL-2-haloacid dehalogenase, a water molecule directly attacked the substrate to displace the halogen atom. In the course of studies on the metabolism of 2-chloroacrylate, we discovered two new enzymes. 2-Haloacrylate reductase catalyzed the asymmetric reduction of 2-haloacrylate to produce L-2-haloalkanoic acid in an NADPH-dependent manner. 2-Haloacrylate hydratase catalyzed the hydration of 2-haloacrylate to produce pyruvate. The enzyme is unique in that it catalyzes the non-redox reaction in an FADH2-dependent manner.  相似文献   

11.
The L-rhamnose isomerase gene (rhi) of Mesorhizobium loti was cloned and expressed in Escherichia coli, and then characterized. The enzyme exhibited activity with respect to various aldoses, including D-allose and L-talose. Application of it in L-talose production from galactitol was achieved by a two-step reaction, indicating that it can be utilized in the large-scale production of L-talose.  相似文献   

12.
The gene encoding α-amino acid ester acyl transferase (AET), the enzyme that catalyzes the peptide-forming reaction from amino acid methyl esters and amino acids, was cloned from Empedobacter brevis ATCC14234 and Sphingobacterium siyangensis AJ2458 and expressed in Escherichia coli. This is the first report on the aet gene. It encodes a polypeptide composed of 616 (ATCC14234) and 619 (AJ2458) amino acids residues. The V max values of these recombinant enzymes during the catalysis of L-alanyl-L-glutamine formation from L-alanine methylester and L-glutamine were 1,010 U/mg (ATCC14234) and 1,154 U/mg (AJ2458). An amino acid sequence similarity search revealed 35% (ATCC14234) and 36% (AJ2458) identity with an α-amino acid ester hydrolase from Acetobacter pasteurianus, which contains an active-site serine in the consensus serine enzyme motif, GxSYxG. In the deduced amino acid sequences of AET from both bacteria, the GxSYxG motif was conserved, suggesting that AET is a serine enzyme.  相似文献   

13.
Histidine decarboxylase (HDC) from Enterobacter aerogenes DL-1 was purified in a three-step procedure involving ammonium sulfate precipitation, Sephadex G-100, and DEAE-Sepharose column chromatography. The partially purified enzyme showed a single protein band of 52.4 kD on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH for HDC activity was 6.5, and the enzyme was stable between pH 4 and 8. Enterobacter aerogenes HDC had optimal activity at 40°C and retained most of its activity between 4 and 50°C. HDC activity was reduced in the presence of numerous tested compounds. Particularly with SDS, it significantly (p < 0.01) inhibited enzyme activity. Conversely, Ca2+ and Mn2+ showed prominent activation effects (p < 0.01) with activity increasing to 117.20% and 123.42%, respectively. The Lineweaver–Burk plot showed that K m and V max values of the enzyme for L-histidine were 0.21 mM and 71.39 µmol/min, respectively. In comparison with most HDCs from other microorganisms and animals, HDC from E. aerogenes DL-1 displayed higher affinity and greater reaction velocity toward L-histidine.  相似文献   

14.
D-Alanine-D-alanine ligase (Ddl) and its mutants maintain the biosynthesis of peptidoglycan, and the substrate specificity of Ddls partially affects the resistance mechanism of vancomycin-resistant enterococci. Through investigation of Ddls, Ddl from Thermotoga maritima ATCC 43589 showed novel characteristics, vis. thermostability up to 90 °C and broad substrate specificity toward 15 D-amino acids, particularly D-alanine, D-cysteine, and D-serine, in that order.  相似文献   

15.
The protective effect of dietary l-glutamine against the hepatotoxic action of d-galactosamine (GalN) was investigated by model experiments with rats. Rats fed with 20% casein diets containing 10% free amino acids were injected with GalN, and the serum aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase activities and the hepatic glycogen content were assayed 20 hours after the injection. These enzyme activities in the group fed with the 10% l-glutamine diet for 8 days were lower than those in the groups fed with the control, 10% l-glutamic acid and 10% l-alanine diets for 8 days. The more prolonged the feeding period with the 10% l-glutamine diet was, the more the serum activity levels of such enzymes were decreased. Although neomycin also lowered these enzyme activities, its simultaneous ingestion with neomycin did not show any additive or synergistic effect. The hepatic glycogen content in the 10% glutamine group still remained high after the GalN treatment. It is therefore assumed that the effectiveness of glutamine intake would have been mediated by glycogen metabolism rather than by uridine metabolism.  相似文献   

16.
For easy measurement of 5-keto D-gluconate (5KGA) and 2-keto D-gluconate (2KGA), two enzymes, 5KGA reductase (5KGR) and 2KGA reductase (2KGR) are useful. The gene for 5KGR has been reported, and a corresponding gene was found in the genome of Gluconobacter oxydans 621H and was identified as GOX2187. On the other hand, the gene for 2KGR was identified in this study as GOX0417 from the N-terminal amino acid sequence of the partially purified enzyme. Several plasmids were constructed to express GOX2187 and GOX0417, and the final constructed plasmids showed good expression of 5KGR and 2KGR in Escherichia coli. From the two E. coli transformants, large amounts of each enzyme were easily prepared after one column chromatography, and the preparation was ready to use for quantification of 5KGA or 2KGA.  相似文献   

17.
Two novel genes (tsB, tsC) involved in the conversion of DL-2-amino-Δ2-thiazoline-4-carboxylic acid (DL-ATC) to L-cysteine through S-carbamyl-L-cysteine (L-SCC) pathway were cloned from the genomic DNA library of Pseudomonas sp. TS1138. The recombinant proteins of these two genes were expressed in Escherichia coli BL21, and their enzymatic activity assays were performed in vitro. It was found that the tsB gene encoded an L-ATC hydrolase, which catalyzed the conversion of L-ATC to L-SCC, while the tsC gene encoded an L-SCC amidohydrolase, which showed the catalytic ability to convert L-SCC to L-cysteine. These results suggest that tsB and tsC play important roles in the L-SCC pathway and L-cysteine biosynthesis in Pseudomonas sp. TS1138, and that they have potential applications in the industrial production of L-cysteine.  相似文献   

18.
The enzyme involved in the reduction of Δ 1-piperideine-6-carboxylate (P6C) to L-pipecolic acid (L-PA) has never been identified. We found that Escherichia coli JM109 transformed with the lat gene encoding L-lysine 6-aminotransferase (LAT) converted L-lysine (L-Lys) to L-PA. This suggested that there is a gene encoding “P6C reductase” that catalyzes the reduction of P6C to L-PA in the genome of E. coli. The complementation experiment of proC32 in E. coli RK4904 for L-PA production clearly shows that the expression of both lat and proC is essential for the biotransformation of L-Lys to L-PA. Further, We showed that both LAT and pyrroline-5-carboxylate (P5C) reductase, the product of proC, were needed to convert L-Lys to L-PA in vitro. These results demonstrate that P5C reductase catalyzes the reduction of P6C to L-PA. Biotransformation of L-Lys to L-PA using lat-expressing E. coli BL21 was done and L-PA was accumulated in the medium to reach at an amount of 3.9 g/l after 159 h of cultivation. It is noteworthy that the ee-value of the produced pipecolic acid was 100%.  相似文献   

19.
The 5-O-(2,6-diamino-2,6-dideoxy-α-d-glucopyranosyl)-2-deoxystreptamine derivative and its related compounds were synthesized by a modified Königs-Knorr condensation of 3,4-di-O-acetyl-2,6-dideoxy-2-(2′,4′-dinitroanilino)-6-phthalimido-α-d-glucopyranosyl bromide (I) with 4,6-di-O-acetyl-N,N′-dicarbobenzoxy-2-deoxystreptamine (V) and the corresponding streptamine (XI). The aglycons (V) and (XI) were prepared by selective acetylation of the aminocyclitol derivatives by taking advantage of the reactivity difference between the hydroxyl groups at C5 and C4 or C6. The condensed products were converted to N-acetyl derivatives and were shown to have the α-configuration by PMR spectroscopy.  相似文献   

20.
ABSTRACT

An N-lauroyl-l-phenylalanine-producing bacterium, identified as Burkholderia sp. strain LP5_18B, was isolated from a soil sample. The enzyme was purified from the cell-free extract of the strain and shown to catalyze degradation and synthesis activities toward various N-acyl-amino acids. N-lauroyl-l-phenylalanine and N-lauroyl-l-arginine were obtained with especially high yields (51% and 89%, respectively) from lauric acid and l-phenylalanine or l-arginine by the purified enzyme in an aqueous system. The gene encoding the novel aminoacylase was cloned from Burkholderia sp. strain LP5_18B and expressed in Escherichia coli. The gene contains an open reading frame of 1,323 nucleotides. The deduced protein sequence encoded by the gene has approximately 80% amino acid identity to several hydratase of Burkholderia. The addition of zinc sulfate increased the aminoacylase activity of the recombinant E. coli strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号