首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一个小麦丝氨酸—苏氨酸蛋白激酶基因的克隆和分析   总被引:8,自引:0,他引:8  
用mRNA差异显示技术在含有抗白粉病基因Pm2 1的小麦 (TriticumaestivumL .)_簇毛麦 (Haynaldiavillosa)6VS/ 6AL易位系 92R137中分离与抗白粉病相关的基因 ,获得一个命名为TaPK1的全长cDNA克隆。序列分析表明 ,它与大豆 (Glycinemax (L .)Merr.)蛋白激酶基因GmPK6高度同源。经推测 ,TaPK1编码 416个氨基酸的多肽 ,属丝氨酸_苏氨酸蛋白激酶家族 ,并具酪氨酸激酶特性。TaPK1是从小麦中分离的新基因。  相似文献   

2.
用mRNA差异显示技术在含有抗白粉病基因Pm21的小麦(Tri ticum aestivum L.) -簇毛麦(Haynaldia villosa) 6VS /6AL易位系92R137中分离与抗白粉病相关的基因,获得一个命名为TaPK1的全长cDNA克隆.序列分析表明,它与大豆(Glycine max (L.) Merr.)蛋白激酶基因GmPK6高度同源.经推测,TaPK1 编码416个氨基酸的多肽,属丝氨酸-苏氨酸蛋白激酶家族,并具酪氨酸激酶特性.TaPK1是从小麦中分离的新基因.  相似文献   

3.
A mutation to chloramphenicol resistance (Cmlr) stimulates production of macrolide avermectin in Streptomyces avermitilis; production starts in the early stationary phase. By labeling in vivo, the Cmlr mutation was shown to stimulate phosphorylation of Ser and Thr in several proteins in the same growth phase. Autophosphorylation of active protein kinases (PK) was analyzed in gel after one- or two-dimensional PAGE for the original S. avermitilis strain ATCC 31272, its Cmlr mutant, and a Cmls revertant. An increase in in vivo phosphorylation was associated with an increase in autophosphorylation of Ser/Thr-PK 41K, 45K, 52K, 62K, and 85K and complete suppression of autophosphorylation of PK 66K. Comparison of the PK molecular weights and pI with the parameters deduced for putative PK encoded by S. avermitilis genes identified the 41K, 45K, 52K, 62K, and 85K proteins as pkn 24, pkn 32, pkn 13, pkn12, and pkn5, respectively. Prenylamine lactate, a modulator of calmodulin-dependent processes, substantially reduced the avermectin production, impaired the Cml resistance, and selectively inhibited Ca2+-dependent PK 85K in the Cmlr mutant. It was assumed that PK 85K is involved in regulating the avermectin production.  相似文献   

4.
从鼠肝cDNA文库克隆了一个新的STE20类蛋白激酶,Mess1.其cDNA长1.7 kb,编码了一个497个氨基酸残基的多肽,与人MST2具有95%的氨基酸相同.Mess1蛋白氨基末端激酶催化区的序列与STE20同源,其羧基末端包含了一簇丝氨酸/苏氨酸和谷氨酸丰富的序列,被认为具有介导与SH2功能区结合的作用.MESS1可能通过与含有SH2功能区的蛋白质相互作用参与细胞内信号转导.  相似文献   

5.
目的 建立蛋白激酶AKT2体外磷酸化检测体系.方法 构建携带AKT2 cDNA编码区的pLNCX2逆转录病毒重组载体,包装重组病毒,转导293A细胞,G418筛选得到稳定表达组成型活化的AKT2细胞株,应用免疫沉淀获得蛋白激AKT2;将核基质结合蛋白SATB1的1~204的氨基酸序列及其47位丝氨酸的突变体S47A、S47D,分别与GST基因融合表达载体pGEX4T-1进行重组,经测序鉴定后转化大肠埃希菌BL-21,IPTG诱导表达经亲和纯化得到GST-SATB1 1-204、GST-SATB1 1-204 S47A和GST-SATB1 1-204 S47D融合蛋白;利用免疫沉淀的AKT2磷酸化GST-SATB1融合蛋白,应用免疫印迹检测其是否被磷酸化.结果 细胞表达的蛋白激酶AKT2能高效的将野生型SATB1 1-204 磷酸化,而不能磷酸化其两种突变体.结论 成功建立了一个蛋白激酶体外磷酸化系统.  相似文献   

6.
链霉菌能够产生多种抗生素,具有重要的研究与应用价值。代谢物组学能够定性和定量测定胞内外主要低分子量代谢产物。相对于其他组学,代谢物组学在监控胞内代谢状态、指导物种理性改造方面具有独特优势。本文旨在建立一种快速、准确的链霉菌胞内代谢物分析方法。以模式菌株天蓝色链霉菌为研究对象,基于GC-MS分析平台优化了代谢物组学样品制备流程中的细胞淬灭时间、菌体分离方法、代谢物提取及代谢物衍生化条件,并利用该方法对天蓝色链霉菌不同生长时期各代谢途径的相对活性进行了初步分析。采用"低温淬灭(–40℃,4 min)-快速过滤分离-反复冻融(45 s/3 min)-衍生化(40℃,90 min)"的流程能够鉴定出中心代谢途径(糖酵解、戊糖磷酸途径和TCA循环)、氨基酸代谢途径、脂肪酸代谢途径、核酸代谢途径及部分次级代谢途径中的103种主要代谢物。利用该流程测定发现天蓝色链霉菌细胞生长周期中存在显著的代谢时序差异,并且发现氨基酸与脂肪酸代谢在衔接初级代谢与次级代谢生物合成中具有重要作用。本研究建立的测定方法能够有效地用于天蓝色链霉胞内代谢物分析,该方法将有助于深入刻画链霉菌细胞代谢过程,为菌株代谢工程改造增加次级代谢产物产量提供理性指导。  相似文献   

7.
8.
Protein tyrosine phosphorylation plays an important role in cell growth, development and oncogenesis. No classical protein tyrosine kinase has hitherto been cloned from plants. Does protein tyrosine kinase exist in plants? To address this, we have performed a genomic survey of protein tyrosine kinase motifs in plants using the delineated tyrosine phosphorylation motifs from the animal system. The Arabidopsis thaliana genome encodes 57 different protein kinases that have tyrosine kinase motifs. Animal non-receptor tyrosine kinases, SRC, ABL, LYN, FES, SEK, KIN and RAS have structural relationship with putative plant tyrosine kinases. In an extended analysis, animal receptor and non-receptor kinases, Raf and Ras kinases, mixed lineage kinases and plant serine/threonine/tyrosine (STY) protein kinases, form a well-supported group sharing a common origin within the superfamily of STY kinases. We report that plants lack bona fide tyrosine kinases, which raise an intriguing possibility that tyrosine phosphorylation is carried out by dual-specificity STY protein kinases in plants. The distribution pattern of STY protein kinase families on Arabidopsis chromosomes indicates that this gene family is partly a consequence of duplication and reshuffling of the Arabidopsis genome and of the generation of tandem repeats. Genome-wide analysis is supported by the functional expression and characterization of At2g24360 and phosphoproteomics of Arabidopsis. Evidence for tyrosine phosphorylated proteins is provided by alkaline hydrolysis, anti-phosphotyrosine immunoblotting, phosphoamino acid analysis and peptide mass fingerprinting. These results report the first comprehensive survey of genome-wide and tyrosine phosphoproteome analysis of plant STY protein kinases.  相似文献   

9.
A method of noise decomposition has been developed. This method allows for the identification of a latent periodicity with symbol insertions and deletions that is specific for all or most amino acid sequences belonging to the same protein family or protein domain. The latent periodicity has been identified in catalytic domains of 85% of serine/threonine and tyrosine protein kinases. Similar results have been obtained for 22 other protein families. The possible role of latent periodicity in protein families is discussed.__________Translated from Molekulyarnaya Biologiya, Vol. 39, No. 3, 2005, pp. 420–436.Original Russian Text Copyright © 2005 by Laskin, Kudryashov, Skryabin, Korotkov.  相似文献   

10.
We identified and characterized the gene encoding a new eukaryotic-type protein kinase from Streptomyces coelicolor A3(2) M145. PkaD, consisting of 598 amino acid residues, contained the catalytic domain of eukaryotic protein kinases in the N-terminal region. A hydrophobicity plot indicated the presence of a putative transmembrane spanning sequence downstream of the catalytic domain, suggesting that PkaD is a transmembrane protein kinase. The recombinant PkaD was found to be phosphorylated at the threonine and tyrosine residues. In S. coelicolor A3(2), pkaD was transcribed as a monocistronic mRNA, and it was expressed constitutively throughout the life cycle. Disruption of chromosomal pkaD resulted in a significant loss of actinorhodin production. This result implies the involvement of pkaD in the regulation of secondary metabolism.  相似文献   

11.
Chemical structures of new piericidins produced by Streptomyces pactum are elucidated on the basis of mass, PMR and CMR spectral analyses. Consequently, these piericidins were shown to be constructed by a combination of variations in each four functionalities and carbon skeletons.  相似文献   

12.
Pseudomonas aeruginosa is an opportunistic pathogen that causes infections in eye, urinary tract, burn, and immunocompromised patients. We have cloned and characterized a serine/threonine (Ser/Thr) kinase and its cognate phosphoprotein phosphatase. By using oligonucleotides from the conserved regions of Ser/Thr kinases of mycobacteria, an 800-bp probe was used to screen P. aeruginosa PAO1 genomic library. A 20-kb cosmid clone was isolated, from which a 4.5-kb DNA with two open reading frames (ORFs) were subcloned. ORF1 was shown to encode Ser/Thr phosphatase (Stp1), which belongs to the PP2C family of phosphatases. Overlapping with the stp1 ORF, an ORF encoding Hank's type Ser/Thr kinase was identified. Both ORFs were cloned in pGEX-4T1 and expressed in Escherichia coli. The overexpressed proteins were purified by glutathione-Sepharose 4B affinity chromatography and were biochemically characterized. The Stk1 kinase is 39 kDa and undergoes autophosphorylation and can phosphorylate eukaryotic histone H1. A site-directed Stk1 (K86A) mutant was shown to be incapable of autophosphorylation. A two-dimensional phosphoamino acid analysis of Stk1 revealed strong phosphorylation at a threonine residue and weak phosphorylation at a serine residue. The Stp1 phosphatase is 27 kDa and is an Mn(2+)-, but not a Ca(2+)- or a Mg(2+)-, dependent Ser/Thr phosphatase. Its activity is inhibited by EDTA and NaF, but not by okadaic acid, and is similar to that of PP2C phosphatase.  相似文献   

13.
14.
15.
【背景】链霉菌属于放线菌科,在土壤环境中广泛分布。链霉菌具有复杂的形态分化和多样性的次生代谢网络,能产生大量具有生物活性的次级代谢产物,被广泛深入研究。【目的】天蓝色链霉菌是链霉菌的模式菌株,其脂肪酸合成代谢与次级代谢联系紧密,但目前脂肪酸合成代谢途径还不清楚,其长链3-酮脂酰ACP合成酶还未见报道。【方法】利用大肠杆菌FabF序列进行同源比对,发现天蓝色链霉菌A3(2)的基因组中,SCO2390(ScoFabF1)、SCO1266(ScoFabF2)、SCO0548(ScoFabF3)和SCO5886 (ScoRedR)具有较高的相似性,并具有保守的Cys-His-His催化活性中心,可能具有长链3-酮脂酰ACP合成酶活性。采用PCR扩增方法分别获得以上基因,连入表达载体pBAD24M后分别互补大肠杆菌fabB(ts)突变株和fabB(ts)fabF双突变株,并检测转化子的生长情况。以上基因与pET-28b连接后,在大肠杆菌BL21(DE3)中表达,并利用Ni-NTA纯化获得蛋白,体外测定其催化活性。将以上基因分别互补大肠杆菌fabF突变株后,GC-MS测定互补株的脂肪酸组成。【结果】4个同源基因中,只有ScofabF1能恢复fabB(ts)fabF双突变株42°C时在添加油酸条件下的生长,其他3个基因均不能恢复生长。而这4个基因都不能恢复fabB(ts)突变株42°C时生长。体外活性测定ScoFabF1具有长链3-酮脂酰ACP合成酶活性,其他3个蛋白都不具有该活性。仅ScofabF1能显著提高大肠杆菌fabF突变株的顺-11-十八碳烯酸(C18:1)比例,其他3个基因都不具有该功能。【结论】天蓝色链霉菌中ScofabF1编码长链3-酮脂酰ACP合成酶II,在脂肪酸利用过程中发挥重要作用。天蓝色链霉菌中没有发现编码长链3-酮脂酰ACP合成酶I的基因,其可能通过其他途径合成少量的不饱和脂肪酸。以上研究结果为进一步研究天蓝色链霉菌中脂肪酸合成机制奠定了基础。  相似文献   

16.
蛋白激酶A(protein kinase A,PKA)为重要细胞信号传导因子,在机体脂类代谢调控中发挥关键作用。PKA激活关键性脂肪水解酶,如激素敏感脂肪酶(hormone sensitive lipase,HSL)与脂肪甘油三酯脂肪酶(adipose triglyceride lipase,ATGL),以促进脂肪动员。PKA上调解偶联蛋白-1(uncoupling protein 1,UCP-1)表达,促进棕色脂肪细胞线粒体热量生成,上调机体产热量。PKA密切参与肝脏细胞脂类合成代谢调控过程。值得关注的是,PKA信号传导异常,是脂质代谢异常相关疾病,如肥胖、心脑血管疾病、2型糖尿病等疾病的重要发病机制之一。药理学研究亦显示,PKA与主要调血脂药的药理作用密切相关。本文综述五年来有关PKA参与脂类代谢调控的研究进展,以期深入了解PKA在脂类代谢中发挥的作用,并为相关疾病的诊疗提供新思路。  相似文献   

17.
S-Adenosyl-L-methionine (SAM) is one of the major methyl donors in all living organisms. The exogenous treatment with SAM leads to increased actinorhodin production in Streptomyces coelicolor A3(2). In this study, mutants from different stages of the AfsK-AfsR signal transduction cascade were used to test the possible target of SAM. SAM had no significant effect on actinorhodin production in afsK, afsR, afsS, or actII-open reading frame 4 (ORF4) mutant. This confirms that afsK plays a critical role in delivering the signal generated by exogenous SAM. The afsK-pHJL-KN mutant did not respond to SAM, suggesting the involvement of the C-terminal of AfsK in binding with SAM. SAM increased the in vitro autophosphorylation of kinase AfsK in a dose-dependent manner, and also abolished the effect of decreased actinorhodin production by a Ser/Thr kinase inhibitor, K252a. In sum, our results suggest that SAM activates actinorhodin biosynthesis in S. coelicolor M130 by increasing the phosphorylation of protein kinase AfsK.  相似文献   

18.
A 3.6-kb DNA fragment from Streptomyces coelicolor A3(2) with the genes valS probably encoding a valyl-tRNA synthetase, folC encoding folylpolyglutamate synthetase, and ndk encoding a nucleoside diphosphate kinase was analysed. folC and ndk are separated by a small open reading frame of unknown function, orfX. The deduced folC gene product is a protein of 46 677 Da whose sequence is similar to other folylpolyglutamate synthetases and folylpolyglutamate synthetase-dihydrofolate synthetases from both Gram-positive and Gram-negative bacteria. After cloning folC behind the lacZ promoter, the Streptomyces folC complemented a folC mutant of Escherichia coli. An essential function for Streptomyces folC was suggested by the fact that it could not be mutated using a conventional gene disruption technique.  相似文献   

19.
Abstract: A proportion of the neuronal microtubule-associated protein (MAP) τ is highly phosphorylated in foetal and adult brain, whereas the majority of τ in the neurofibrillary tangles of Alzheimer's patients is hyperphosphorylated; many of the phosphorylation sites are serines or threonines followed by prolines. Several kinases phosphorylate τ at such sites in vitro. We have now shown that purified recombinant stress-activated protein kinase/c-Jun N-terminal kinase, a proline-directed kinase of the MAP kinase extended family, phosphorylates recombinant τ in vitro on threonine and serine residues. Western blots using antibodies to phosphorylation-dependent τ epitopes demonstrated that phosphorylation occurs in both of the main phosphorylated regions of τ protein. Unlike glycogen synthase kinase-3, the c-Jun N-terminal kinase readily phosphorylates Thr205 and Ser422, which are more highly phosphorylated in Alzheimer τ than in foetal or adult τ. Glycogen synthase kinase-3 may preferentially phosphorylate the sites found physiologically, in foetal and to a smaller extent in adult τ, whereas stress-activated/c-Jun N-terminal kinase and/or other members of the extended MAP kinase family may be responsible for pathological proline-directed phosphorylations. Inflammatory processes in Alzheimer brain might therefore contribute directly to the pathological formation of the hyperphosphorylated τ found in neurofibrillary tangles.  相似文献   

20.
To investigate the roles of protein kinase C (PKC) isoforms in Echinoderms, we cloned starfish cDNAs for novel, atypical, and conventional PKCs. They showed highest homology with PKCδ, ι, and α isoforms respectively. It was predicted from the whole genome sequence and by RT-PCR that sea urchin has only one isoform of each PKC subgroups. It is thus likely that these isoforms are the prototypes or ancestors of the PKC subgroups. The phylogenetic tree suggests that atypical PKC was first formed by evolution from the common prototype of AGC protein kinase family, and novel and conventional PKCs next. RT-PCR analysis indicated that novel and atypical PKC mRNAs are expressed ubiquitously in all tissues of adult starfish, whereas conventional PKC mRNA is expressed mainly in the ovary and oocytes, and only slightly in the tube foot and stomach. Upon heterologous expression, only atypical PKC was expressed in the functional form in insect cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号