首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Paclitaxel is a potential cancer chemotherapeutic agent for ovary, breast, and head and neck cancers; its effects on nasopharyngeal carcinoma (NPC) have not been reported previously. This study investigated the cytotoxic mechanism of paclitaxel in two NPC cell lines, NPC-TW01 and NPC-TW04. NPC cells treated with pacli-taxel showed convoluted nuclei, condensed chromatin and decreased cellular and nuclear volume, and also exhibited genomic DNA degradation into multiple oligonucleosomal fragments, suggesting that pacli-taxel induced apoptosis in these cells. The effects of paclitaxel on apoptosis-related proteins including Bcl-2, Bax and CDC 2 were also detected. Although the levels of Bcl-2 and Bax were not changed in NPC cells following treatment with 5 nM-1 μM of paclitaxel, phosphorylation of Bcl-2 was significantly observed in the cells treated with 1 μM of paclitaxel for 12 hours. In addition, cyclin B1-associated CDC 2 kinase was highly activated in the NPC cells exposed to paclitaxel even at low (5 nM) concentration, and this result is associated with the finding that low concentration of paclitaxel is able to induce apoptosis in NPC cells.  相似文献   

3.
The increasing resistance of nasopharyngeal carcinoma to irradiation makes the exploration of effective radiosensitizers necessary. Tetrandrine is known to be an antitumor drug, but little is known regarding its radiosensitization effect on nasopharyngeal carcinoma. We investigated the effect of combined treatment of irradiation and maximum non-cytotoxic doses of tetrandrine on the nasopharyngeal carcinoma cell lines CNE1 and CNE2. The maximum non-cytotoxic doses of tetrandrine in CNE1 and CNE2 cells were assessed using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The radiosensitization of cells receiving the maximum non-cytotoxic doses of tetrandrine was assessed by evaluating cell proliferation and DNA damage repair using MTT, clonogenic, comet assays and detection of caspase-3 and phosphorylated histone H2AX (γ-H2AX). The cell cycle was assessed by flow cytometry, and protein expression was detected by western blot analysis. The maximum non-cytotoxic doses of tetrandrine in CNE1 and CNE2 cells were 1.5 μmol/L and 1.8 μmol/L, respectively. When cells were exposed to irradiation and the maximum non-cytotoxic doses of tetrandrine, the survival fraction was decreased. DNA damage and γ-H2AX levels markedly increased. Moreover, tetrandrine abrogated the G2/M phase arrest caused by irradiation. Combined treatment with the maximum non-cytotoxic dose of tetrandrine and irradiation caused suppression of the phosphorylation of CDK1 and CDC25C and increase in the expression of cyclin B1. The study in vivo also showed that the maximum non-cytotoxic dose of tetrandrine could reduce tumor growth in xenograft tumor model. Our results suggest that the maximum non-cytotoxic dose of tetrandrine can enhance the radiosensitivity of CNE1 and CNE2 cells and that the underlying mechanism could be associated with abrogation of radiation-induced G2/M arrest via activation of the CDC25C/CDK1/Cyclin B1 pathway.  相似文献   

4.
It is well known that at the beginning of mitosis the nucleolus disassembles but then reassembles at the end of mitosis. However, the mechanisms of these processes are still unclear. In the present work, we show for the first time that selective inhibition of cyclin B-dependent kinase 1 (CDK1) by roscovitine induces premature assembly of the nucleolus in mammalian cells in metaphase. Treatment of metaphase cells with roscovitine induces formation of structures in their cytoplasm that contain major proteins of the mature nucleolus participating in rRNA processing, such as B23/nucleophosmin, C23/nucleolin, fibrillarin, Nop52, as well as partially processed (immature) 46-45S pre-rRNA. This effect is reproducible in cells of various types; this indicates that general mechanisms regulate early stages of the nucleolus reassembly with CDK1 participation in mammalian cells. Based on our and literature data, we suggest that inactivation of the CDK1-cyclin B complex at the end of mitosis results in dephosphorylation of B23/nucleophosmin and C23/nucleolin; this facilitates their interaction with pre-rRNA and leads to formation of insoluble supramolecular complexes--nucleolus-derived foci.  相似文献   

5.
The molecular mechanisms underlying oocyte maturation in the annelid polychaetes Arenicola marina and Arenicola defodiens were investigated. In both species, a hitherto unidentified hormone triggers synchronous and rapid transition from prophase to metaphase, a maturation process which can be easily reproduced in vitro. Activation of a roscovitine- and olomoucine-sensitive M-phase-specific histone, H1 kinase, occurs during oocyte maturation. Using affinity chromatography on immobilized p9CKShs1, we purified CDK1 and cyclin B from oocyte extracts prepared from both phases and both species. In prophase, CDK1 is present both as an inactive, but Thr161-phosphorylated monomer, and as an inactive (Tyr15-phosphorylated) heterodimer with cyclin B. Prophase to metaphase transition is associated with complete tyrosine dephosphorylation of the cyclin B-associated CDK1, with phosphorylation of cyclin B, and with dramatic activation of the kinase activity of the CDK1/cyclin B complex. We propose that Arenicola oocytes may provide an ideal model system to investigate the acquisition of the ability of oocytes to be fertilized that occurs as oocyte shift from prophase to metaphase, an important physiological event, probably regulated by active CDK1/cyclin B.  相似文献   

6.
The distinct expression patterns of the two A-type cyclins during spermatogenesis and the absolute requirement for cyclin A1 in this biological process in vivo suggest that they may confer distinct biochemical properties to their CDK partners. We therefore compared human cyclin A1- and cyclin A2-containing CDK complexes in vitro by determining kinetic constants and by examining the complexes for their ability to phosphorylate pRb and p53. Differences in biochemical activity were observed in CDK2 but not CDK1 when complexed with cyclin A1 versus cyclin A2. Further, CDK1/cyclin A1 is a better kinase complex for phosphorylating potentially physiologically relevant substrates pRb and p53 than CDK2/cyclin A2. The activity of CDKs can therefore be regulated depending upon which A-type cyclin they bind and CDK1/cyclin A1 might be preferred in vivo.  相似文献   

7.
8.
The Wnt/β‐catenin signaling pathway regulates various aspects of development and plays important role in human carcinogenesis. Nemo‐like kinase (NLK), which is mediator of Wnt/β‐catenin signaling pathway, phosphorylates T‐cell factor/lymphoid enhancer factor (TCF/LEF) factor and inhibits interaction of β‐catenin/TCF complex. Although, NLK is known to be a tumor suppressor in Wnt/β‐catenin signaling pathway of colon cancer, the other events occurring downstream of NLK pathways in other types of cancer remain unclear. In the present study, we identified that expression of NLK was significantly up‐regulated in the HCCs compared to corresponding normal tissues in five selected tissue samples. Immunohistochemical analysis showed significant over‐expression of NLK in the HCCs. Targeted‐disruption of NLK suppressed cell growth and arrested cell cycle transition. Suppression of NLK elicited anti‐mitogenic properties of the Hep3B cells by simultaneous inhibition of cyclinD1 and CDK2. The results of this study suggest that NLK is aberrantly regulated in HCC, which might contribute to the mitogenic potential of tumor cells during the initiation and progression of hepatocellular carcinoma; this process appears to involve the induction of CDK2 and cyclin D1 and might provide a novel target for therapeutic intervention in patients with liver cancer. J. Cell. Biochem. 110: 687–696, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
In this paper, we show that substrate specificity is primarily conferred on human mitotic cyclin-dependent kinases (CDKs) by their subcellular localization. The difference in localization of the B-type cyclin-CDKs underlies the ability of cyclin B1-CDK1 to cause chromosome condensation, reorganization of the microtubules, and disassembly of the nuclear lamina and of the Golgi apparatus, while it restricts cyclin B2-CDK1 to disassembly of the Golgi apparatus. We identify the region of cyclin B2 responsible for its localization and show that this will direct cyclin B1 to the Golgi apparatus and confer upon it the more limited properties of cyclin B2. Equally, directing cyclin B2 to the cytoplasm with the NH(2) terminus of cyclin B1 confers the broader properties of cyclin B1. Furthermore, we show that the disassembly of the Golgi apparatus initiated by either mitotic cyclin-CDK complex does not require mitogen-activated protein kinase kinase (MEK) activity.  相似文献   

10.
11.
Wu T  Huang XH 《生理学报》2011,63(6):555-564
多发性内分泌肿瘤1-(multiple endocrine neoplasia type 1,MEN1)是一种常染色体显性遗传的肿瘤综合征,患者常表现出多发性的内分泌器官肿瘤,包括垂体瘤、甲状旁腺瘤和胰岛瘤.抑癌基因Men1的突变导致MENl的发生,其编码的蛋白为核蛋白menin.Menin可以抑制包括胰岛β细胞在内的...  相似文献   

12.
13.
Spermatogenesis is a highly ordered process which requires mitotic and meiotic divisions. In this work, we studied the relative changes in the levels of the two components of the M-phase promoting factor (MPF): the regulatory subunit cyclin B1 (CycB1) and its catalytic subunit cdk1, in spermatogenic cells of rats between 16 and 90 days of life. A multivariate flow cytometry analysis of forward scatter (FSC), side scatter (SSC) and DNA content was used to identify six populations of rat germ cells: spermatogonia with preleptotene spermatocytes, young pachytene spermatocytes, middle to late pachytene spermatocytes, secondary spermatocytes with doublets of round spermatids, round spermatids, and elongated spermatids. For any population studied no significant difference in the relative cellular content of CycB1 or cdk1 proteins between animals of different ages was observed. By contrast, CycB1 and cdk1 levels were different between the different populations of germ cells. CycB1 and cdk1 were rather high in young pachytene spermatocytes and culminated in late spermatocytes, i.e. just before the first meiotic division. The relative levels of the two proteins remained high in secondary spermatocytes then decreased in round spermatids at the exit of meiosis. Similar results were obtained by Western-blot analysis of total proteins obtained from lysates of elutriated fractions of spermatocytes and spermatids. MPF activity was assessed in lysates of germ cells from 32-day-old rats or adult animals using p13suc1 agarose and histone H1 as an exogenous substrate. H1 kinase activity was higher in pachytene spermatocytes than in round spermatid fractions from both adult and young rats. These results indicate that the meiotic G2/M transition is associated to high levels of CycB1 and cdk1 leading to high MPF activity irrespective of the age of the animals.  相似文献   

14.
GL331, a new homologue of etoposide (VP-16), was developed to cope with the multiple drug resistance occurring in certain malignant tumours. We previously indicated that GL331, like VP-16 and other major cancer chemotherapeutic agents, induced apoptosis in a variety of human cancer cell lines including nasopharyngeal carcinoma (NPC) NPC-TW01 and NPC-TW04 cells. In this study, we further explored the effect of GL331 on the cell cycle progression of NPC cells. Flow cytometric analysis of DNA content was first used to demonstrate the ability of GL331 to induce cell growth arrest at S-G2 phase in most NPC cells. Besides acting as a topoisomerase II inhibitor, GL331 inhibited cellular cyclin B1-associated CDC 2 kinase activity 6 h after treatment, accounting partly at least for its induction of the cell cycle arrest. As with cyclin A, D1, E, CDK 2 and PCNA, the levels of cyclin B1 and CDC 2 proteins were not changed after GL331 treatment; however, the ability to form complex between cyclin B1 and CDC 2 was obviously affected in GL331-treated NPC cells, which associates with the inhibition of cyclin B1/CDC 2 kinase activity elicited by GL331. These data could provide more principal bases for future therapeutic application of this potential anti-cancer agent.  相似文献   

15.
In Drosophila cells cyclin B is normally degraded in two phases: (a) destruction of the spindle-associated cyclin B initiates at centrosomes and spreads to the spindle equator; and (b) any remaining cytoplasmic cyclin B is degraded slightly later in mitosis. We show that the APC/C regulators Fizzy (Fzy)/Cdc20 and Fzy-related (Fzr)/Cdh1 bind to microtubules in vitro and associate with spindles in vivo. Fzy/Cdc20 is concentrated at kinetochores and centrosomes early in mitosis, whereas Fzr/Cdh1 is concentrated at centrosomes throughout the cell cycle. In syncytial embryos, only Fzy/Cdc20 is present, and only the spindle-associated cyclin B is degraded at the end of mitosis. A destruction box-mutated form of cyclin B (cyclin B triple-point mutant [CBTPM]-GFP) that cannot be targeted for destruction by Fzy/Cdc20, is no longer degraded on spindles in syncytial embryos. However, CBTPM-GFP can be targeted for destruction by Fzr/Cdh1. In cellularized embryos, which normally express Fzr/Cdh1, CBTPM-GFP is degraded throughout the cell but with slowed kinetics. These findings suggest that Fzy/Cdc20 is responsible for catalyzing the first phase of cyclin B destruction that occurs on the mitotic spindle, whereas Fzr/Cdh1 is responsible for catalyzing the second phase of cyclin B destruction that occurs throughout the cell. These observations have important implications for the mechanisms of the spindle checkpoint.  相似文献   

16.
DOC-1R (deleted in oral cancer-1 related) is a novel putative tumor suppressor. This study investigated DOC-1R antitumor activity and the underlying molecular mechanisms. Cell phenotypes were assessed using flow cytometry, BrdU incorporation and CDK2 kinase assays in DOC-1R overexpressing HeLa cells. In addition, RT-PCR and Western blot assays were used to detect underlying molecular changes in these cells. The interaction between DOC-1R and CDK2 proteins was assayed by GST pull-down and immunoprecipitation-Western blot assays. The data showed that DOC-1R overexpression inhibited G1/S phase transition, DNA replication and suppressed CDK2 activity. Molecularly, DOC-1R inhibited CDK2 expression at the mRNA and protein levels, and there were decreased levels of G1-phase cyclins (cyclin D1 and E) and elevated levels of p21, p27, and p53 proteins. Meanwhile, DOC-1R associated with CDK2 and inhibited CDK2 activation by obstructing its association with cyclin E and A. In conclusion, the antitumor effects of DOC-1R may be mediated by negatively regulating G1 phase progression and G1/S transition through inhibiting CDK2 expression and activation.  相似文献   

17.
18.
Mitosis is promoted and regulated by reversible protein phosphorylation catalyzed by the essential NIMA and CDK1 kinases in the model filamentous fungus Aspergillus nidulans. Protein methylation mediated by the Set1/COMPASS methyltransferase complex has also been shown to regulate mitosis in budding yeast with the Aurora mitotic kinase. We uncover a genetic interaction between An-swd1, which encodes a subunit of the Set1 protein methyltransferase complex, with NIMA as partial inactivation of nimA is poorly tolerated in the absence of swd1. This genetic interaction is additionally seen without the Set1 methyltransferase catalytic subunit. Importantly partial inactivation of NIMT, a mitotic activator of the CDK1 kinase, also causes lethality in the absence of Set1 function, revealing a functional relationship between the Set1 complex and two pivotal mitotic kinases. The main target for Set1-mediated methylation is histone H3K4. Mutational analysis of histone H3 revealed that modifying the H3K4 target residue of Set1 methyltransferase activity phenocopied the lethality seen when either NIMA or CDK1 are partially functional. We probed the mechanistic basis of these genetic interactions and find that the Set1 complex performs functions with CDK1 for initiating mitosis and with NIMA during progression through mitosis. The studies uncover a joint requirement for the Set1 methyltransferase complex with the CDK1 and NIMA kinases for successful mitosis. The findings extend the roles of the Set1 complex to include the initiation of mitosis with CDK1 and mitotic progression with NIMA in addition to its previously identified interactions with Aurora and type 1 phosphatase in budding yeast.  相似文献   

19.
To maintain cellular homeostasis against the demands of the extracellular environment, a precise regulation of kinases and phosphatases is essential. In cell cycle regulation mechanisms, activation of the cyclin-dependent kinase (CDK1) and cyclin B complex (CDK1:cyclin B) causes a remarkable change in protein phosphorylation. Activation of CDK1:cyclin B is regulated by two auto-amplification loops-CDK1:cyclin B activates Cdc25, its own activating phosphatase, and inhibits Wee1, its own inhibiting kinase. Recent biological evidence has revealed that the inhibition of its counteracting phosphatase activity also occurs, and it is parallel to CDK1:cyclin B activation during mitosis. Phosphatase regulation of mitotic kinases and their substrates is essential to ensure that the progression of the cell cycle is ordered. Outlining how the mutual control of kinases and phosphatases governs the localization and timing of cell division will give us a new understanding about cell cycle regulation. [BMB Reports 2013; 46(6): 289-294]  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号