首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis, characterization and hydrolysis in aqueous buffers of novel N-alkyl-N-alkyloxycarbonylaminomethyl (NANAOCAM) derivatives of substituted phenols, theophylline (Th) and 6-mercaptopurine (6MP) were carried out. The mechanism of hydrolysis was further investigated by synthesis, characterization and hydrolysis of N-aryl-N-alkyloxycarbonylaminomethyl (NArNAOCAM) derivatives of phenols. The hydrolysis follows pseudounimolecular first order kinetics and operates by way of an S(N)1-type mechanism. Topical delivery of selected derivatives of acetaminophen (APAP), Th and 6MP was examined in in vitro diffusion cell experiments from IPM across hairless mice skins. The prodrug of APAP and 6MP increased permeation across the skin by about 2- and 4-fold, respectively, compared to the parent drug. NANAOCAM promoieties can act as novel prodrug derivatives of phenol, imide and thiol containing drugs for enhancing topical absorption.  相似文献   

2.
The possibility that some factor in serum changes the substrate specificity of purified human plasma carboxyl esterase, which hydrolyzes the short chain fatty acid ester, tributyrin, was investigated. The purified carboxyl esterase from human plasma hydrolyzed 48 mmol of tributyrin/mg of protein/h, monoolein at 1560 mumol of released fatty acids/mg of protein/h, diolein at 133 mumol of released fatty acids/mg of protein/h, and triolein at less than 10 mumol of released fatty acids/mg of protein/h. When human serum was applied to phenyl-Sepharose, a triolein hydrolysis-promoting factor (THPF) for purified carboxyl esterase was bound to the gel and was eluted with water. This partially purified human serum THPF enhanced carboxyl esterase-catalyzed triolein hydrolysis about 30-fold, diolein hydrolysis 2-fold, and monoolein hydrolysis 1.5-fold. Hydrolysis of triolein in very low density lipoproteins (d less than 1.006) and intermediate lipoproteins (1.006 less than d less than 1.019) by carboxyl esterase was also enhanced by addition of THPF. THPF activity was reduced by treatment of delipidation, but resistant to trypsin treatment or heating at 50 degrees C. These results indicated that serum carboxyl esterase can hydrolyze the long chain fatty acid ester, triolein, in the presence of triolein hydrolysis-promoting factor in serum.  相似文献   

3.
Hydrolysis of lipid mixtures by rat hepatic lipase   总被引:1,自引:0,他引:1  
The hydrolysis of phospholipid mixtures by purified rat hepatic lipase, also known as hepatic triglyceride lipase, was studied in a Triton X-100/lipid mixed micellar system. Column chromatography of the mixed micelles showed elution of Triton X-100 and binary lipid mixtures of phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine as a single peak. This indicated that the mixed micelles were homogenous and contained all components in the designated molar ratios. The molar ratio of Triton X-100 to lipid was kept constant at 4 to 1. Labeling one lipid with 3H and the other lipid with 14C enabled us to determine the hydrolysis of both components of these binary lipid mixed micelles. We found that the hydrolysis of phosphatidylcholine was activated by the inclusion of small amounts of phosphatidic acid (2.5-fold), phosphatidylethanolamine (1.5-fold) or phosphatidylserine (1.4-fold). The maximal activation of phosphatidylcholine hydrolysis was observed when 5 mol% of phosphatidylethanolamine, 7.5 mol% phosphatidic acid or 5 mol% phosphatidylserine was added to Triton X-100 mixed micelles. The hydrolysis of phosphatidic acid was activated 30%, and that of phosphatidylserine was inhibited 30% when the molar proportion of phosphatidylcholine was less than 50 mol%. The hydrolysis of phosphatidylethanolamine was slightly activated when the mol% of phosphatidylcholine was below 5. The hydrolysis of phosphatidylserine was inhibited by phosphatidylethanolamine when the mol% of the latter was 50 or less whereas phosphatidylethanolamine hydrolysis was not affected by phosphatidylserine. Under the conditions used sphingomyelin and cholesterol did not have a significant effect on the hydrolysis of the phospholipids studied. In agreement with our previous study (Kucera et al. (1988) J. Biol. Chem. 263, 1920-1928) these studies show that the phospholipid polar head group is an important factor which influences the action of hepatic lipase and that the interfacial properties of the substrate play a role in the expression of the activity of this enzyme. The molar ratios of phosphatidic acid, phosphatidylethanolamine and phosphatidylserine which activated phosphatidylcholine hydrolysis correspond closely to the molar ratios of these lipids found in the surface lipid film of lipoproteins e.g., high density lipoproteins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Chylomicron remnants labelled biologically with [3H]cholesterol were efficiently taken up by freshly isolated hepatocytes during a 3 h incubation in Krebs bicarbonate medium. Their [3H]cholesteryl ester was hydrolysed (74% net hydrolysis), and 0.1 mM-chloroquine could partially inhibit this hydrolysis, provided that hepatocytes were first preincubated for 2 h 30 min at 37 degrees C. This hydrolysis was also measured in preincubated cells with remnants double-labelled (3H and 14C) on their free cholesterol moiety; [3H]cholesterol arising from [3H]cholesteryl ester hydrolysis was recovered in the free [3H]cholesterol pool. A dose-response study showed saturation of remnant uptake at 180 micrograms of remnant protein/10(7) cells. Heparin (10 units/ml) increased remnant uptake by 63% (P less than 0.01), [3H]cholesteryl ester accumulation in the cell pellet by 110% (P less than 0.025) and hepatic lipase activity secreted in the medium by 2.4-fold (P less than 0.01) and by 3.3-fold (P less than 0.01) at the end of the preincubation and incubation periods respectively. Addition of 100 munits of semi-purified hepatic lipase preparation/flask stimulated remnant uptake by 44-69%, and [3H]cholesteryl ester accumulation in the presence of chloroquine by 2.1-fold (P less than 0.025). When hepatic lipase was incubated solely with the remnants, it decreased their triacylglycerol and phospholipid contents by 24% and 26% respectively. Thus freshly isolated hepatocytes may be used to study chylomicron-remnant uptake. Hepatic lipase, which seems to underly the stimulating effect of heparin, facilitates remnant uptake in vitro, and this could be mediated by at least one (or both) of its hydrolytic properties.  相似文献   

5.
A homogeneous preparation of endo-oligopeptidase A from rabbit brain cleaves luteinizing hormone-releasing hormone (less than Glu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2) at the Tyr-Gly bond only after the removal of Gly-NH2 from the COOH-terminal position of the molecule. The influence of the carboxyl terminus on hydrolysis by brain endo-oligopeptidases was studied using bradykinin as a model substrate. The substitution of the carboxyl group of bradykinin by the amide reduces by 2.5-fold the rate of Phe-Ser bond hydrolysis by endo-oligopeptidase A but has no effect on the rate of hydrolysis of the Pro-Phe bond by endo-oligopeptidase B. On the other hand, the deletion of Phe-Arg from the COOH-terminal portion of bradykinin makes the peptide resistant to hydrolysis by endo-oligopeptidase A whereas it increases by 5-fold the rate of hydrolysis of the Pro-Gly bond by endo-oligopeptidase B.  相似文献   

6.
We addressed the ability of various organophosphorus (OP) hydrolases to catalytically scavenge toxic OP nerve agents. Mammalian paraoxonase (PON1) was found to be more active than Pseudomonas diminuta OP hydrolase (OPH) and squid O,O-di-isopropyl fluorophosphatase (DFPase) in detoxifying cyclosarin (O-cyclohexyl methylphosphonofluoridate) and soman (O-pinacolyl methylphosphonofluoridate). Subsequently, nine directly evolved PON1 variants, selected for increased hydrolytic rates with a fluorogenic diethylphosphate ester, were tested for detoxification of cyclosarin, soman, O-isopropyl-O-(p-nitrophenyl) methyl phosphonate (IMP-pNP), DFP, and chlorpyrifos-oxon (ChPo). Detoxification rates were determined by temporal acetylcholinesterase inhibition by residual nonhydrolyzed OP. As stereoisomers of cyclosarin and soman differ significantly in their acetylcholinesterase-inhibiting potency, we actually measured the hydrolysis of the more toxic stereoisomers. Cyclosarin detoxification was approximately 10-fold faster with PON1 mutants V346A and L69V. V346A also exhibited fourfold and sevenfold faster hydrolysis of DFP and ChPo, respectively, compared with wild-type, and ninefold higher activity towards soman. L69V exhibited 100-fold faster hydrolysis of DFP than the wild-type. The active-site mutant H115W exhibited 270-380-fold enhancement toward hydrolysis of the P-S bond in parathiol, a phosphorothiolate analog of parathion. This study identifies three key positions in PON1 that affect OP hydrolysis, Leu69, Val346 and His115, and several amino-acid replacements that significantly enhance the hydrolysis of toxic OPs. GC/pulsed flame photometer detector analysis, compared with assay of residual acetylcholinesterase inhibition, displayed stereoselective hydrolysis of cyclosarin, soman, and IMP-pNP, indicating that PON1 is less active toward the more toxic optical isomers.  相似文献   

7.
Calponin, an actin-binding protein, inhibited the acto-heavy meromyosin (HMM) MgATPase and lowered the binding of HMM to actin. The amount of calponin bound to actin or tropomyosin-actin was the same when the ATPase was inhibited 80-90%. While the KATPase was diminished only less than 2-fold in the presence of calponin, the Vmax was decreased 6-fold and 2-fold with actin and tropomyosin-actin, respectively. A comparison of the kinetic constants for the ATP hydrolysis obtained in the presence of actin-calponin and tropomyosin-actin-calponin revealed that the tropomyosin augmented the Vmax 5-fold from the inhibited level, but there was no effect on the KATPase.  相似文献   

8.
We reported earlier that hepatic lipase (HL)-catalyzed hydrolysis of phospholipid monolayers is activated by apolipoprotein (apo) E [Thuren et al. (1991b) J. Biol. Chem. 266, 4853-4861]. On the basis of these studies, it was postulated that apoE-rich high-density lipoproteins (HDL) were preferred substrates for HL. In the present study, we tested this hypothesis, as well as further characterizing the activation of HL hydrolysis of phospholipid by apoE. The apoE-rich HDL, referred to as HDL-I, were isolated by heparin-Sepharose chromatography, and the phospholipid hydrolysis by HL was compared to an apoE-poor HDL, designated HDL-II. The hydrolysis of HDL-I phosphatidylcholine was approximately 3-fold higher than HDL-II, supporting the hypothesis that HL preferably hydrolyzes the phospholipids in apoE-rich HDL. In order to gain additional insight into the nature of the activation, we used phospholipid monolayers as model systems. Comparison of the ability of the two thrombolytic fragments of apoE (22 kDa, residues 1-191; 12 kDa, residues 192-299) revealed that only the 12-kDa fragment was capable of activating the hydrolysis of phospholipid by HL (1.75-fold). However, activation was less than with the intact protein (2.8-fold for apoE3), suggesting that the intact protein was required for full activation. The fact that the 12-kDa fragment, which represents a major lipid region of the protein, did activate HL suggests that activation occurs at the lipid-water interface.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The rates of hydrolysis of three specific substrates of chymotrypsin, glutaryl-L-phenylalanine p-nitroanilide, acetyl-DL-tyrosine p-nitroanilide and acetyl-L-tyrosine anilide were enhanced by 2,2′-bis[α-(benzyldimethylammonium)methyl] azobenzene dibromide and less so by related compounds. Detailed studies with glutaryl-L-phenylalanine p-nitroanilide showed a 42-fold increase in kcat with no change in Km. No acceleration (or inhibition) was noted with esters, hydroxamides or proteins as substrates. Tryptic hydrolysis of benzoyl-DL-arginine p-nitroanilide was unaffected. It was concluded that certain quaternary compounds can act as allosteric effectors of chymotrypsin.  相似文献   

10.
The nuclease described by Carell, E.F., Egan, J.M. and Pratt, E.A. [Arch. Biochem. Biophys. (1970) 138, 26-31] has been purified 1000-fold from Euglena gracilis strain Z. The enzyme catalyzes the hydrolysis of both polyribonucleotides and polydeoxyribonucleotides. The relative rates of hydrolysis of synthetic and natural polynucleotides was found to be: poly (U) 100, poly (dT) 33, denatured calf-thymus DNA 33, yeast tRNA 9, E. coli total RNA 6, poly (dA dT) 5, poly (A) less than 1, poly (C) less than .05, and poly (G) less than .05. The enzyme attacks polynucleotides in an endonucleolytic fashion, yielding products terminated with a 3'-phosphate. Poly (U) appears to be hydrolyzed completely to 3'-UMP; both RNA and DNA appear to have some phosphodiester bonds resistant to enzyme catalyzed hydrolysis. Because of its mode of action and its inducibility by light, we propose the name endonuclease L for this enzyme.  相似文献   

11.
The degradation of thyroliberin (less than Glu-His-Pro-NH2) to its component amino acids by the soluble fraction of guinea pig brain is catalysed by four enzymes namely a pyroglutamate aminopeptidase, a post-proline cleaving enzyme, a post-proline dipeptidyl aminopeptidase and a proline dipeptidase. 1. The pyroglutamate aminopeptidase was purified to over 90% homogeneity with a purification factor of 2868-fold and a yield of 5.7%. In addition to catalysing the hydrolysis of thyroliberin, acid thyroliberin and pyroglutamate-7-amido-4-methylcoumarin the pyroglutamate aminopeptidase catalysed the hydrolysis of the peptide bond adjacent to the pyroglutamic acid residue in luliberin, neurotensin bombesin, bradykinin-potentiating peptide B, the anorexogenic peptide and the dipeptides pyroglutamyl alanine and pyroglutamyl valine. Pyroglutamyl proline and eledoisin were not hydrolysed. 2. The post-proline cleaving enzyme was purified to apparent electrophoretic homogeneity with a purification factor of 2298-fold and a yield of 10.6%. The post-proline cleaving enzyme catalysed the hydrolysis of thyroliberin and N-benzyloxycarbonyl-glycylproline-7-amido-4-methylcoumarin. It did not catalyse the hydrolysis of glycylproline-7-amido-4-methylcoumarin or His-Pro-NH2. 3. The post-proline dipeptidyl aminopeptidase was partially purified with a purification factor of 301-fold and a yield of 8.9%. The post-proline dipeptidyl aminopeptidase catalysed the hydrolysis of His-Pro-NH2 and glycylproline-7-amido-4-methylcoumarin but did not exhibit any post-proline cleaving endopeptidase activity against thyroliberin or N-benzyloxycarbonyl-glycylproline-7-amido-4-methylcoumarin. 4. Studies with various functional reagents indicated that the pyroglutamate aminopeptidase could be specifically inhibited by 2-iodoacetamide (100% inhibition at an inhibitor concentration of 5 microM), the post-proline cleaving enzyme by bacitracin (IC50 = 42 microM) and the post-proline dipeptidyl aminopeptidase by puromycin (IC50 = 46 microM). Because of their specific inhibitory effects these three reagents were key elements in the elucidation of the overall pathway for the metabolism of thyroliberin by guinea pig brain tissue enzymes.  相似文献   

12.
Human apolipoprotein stimulation of sphingomyelin (SM) hydrolysis by sphingomyelinase from human skin fibroblasts has been studied. Apolipoproteins A-I, A-II, B, C-I, and E do not enhance sphingomyelin hydrolysis above control levels. In contrast, apoC-II stimulates sphingomyelin hydrolysis by approximately 2.5-fold. ApoC-III, the most potent apoprotein activator, stimulates hydrolysis by 3-4-fold. ApoC-III stimulation is not significantly different for the three different isoforms which carry 0, 1, or 2 sialic acid residues. The amino-terminal half of this apoprotein, C-III(1-40), which does not bind to phospholipid surfaces, does not activate sphingomyelinase. In contrast, the carboxyl-terminal half, C-III(41-79), which strongly binds to phospholipid surfaces, stimulates sphingomyelin hydrolysis to the same level as that produced by the intact, full-length apoprotein. Incubation of sphingomyelin vesicles with increasing proportions of apoC-III results in the formation of complexes of increasing apoC-III:SM ratio and decreasing radius. The hydrolysis of sphingomyelin in the 1:50 (mol/mol) complex was more than 2-fold greater than that of the 1:200 (mol/mol) complex. The rate of hydrolysis of egg yolk sphingomyelin in the 1:50 complex was maximal [0.9 mumol h-1 (mg of protein)-1] at the gel----liquid-crystalline phase transition temperature (Tm) of the complex (40 degrees C). The rate of hydrolysis fell markedly at either higher or lower temperature. Determination of the apparent Km and Vmax values below, at, and above Tm indicated that the temperature dependence of sphingomyelin hydrolysis was attributable primarily to changes in Vmax.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
S K Yang  K Liu  F P Guengerich 《Chirality》1990,2(3):150-155
Rates of hydrolysis of racemic and enantiomeric oxazepam 3-acetates (OXA) by esterases in human and rat liver microsomes and rat brain S9 fraction were compared. When rac-OXA was the substrate, esterases in human and rat liver microsomes were highly enantioselective toward (R)-OXA. In contrast, esterases in rat brain S9 fraction were highly enantioselective toward (S)-OXA. Hydrolysis rates of rac-OXA were highly dependent on the amount of esterases used. At 0.05 mg protein equivalent of esterases and 150 nmol of rac-OXA per ml of incubation mixture, the (R)-OXA was hydrolyzed 3.6-fold and 18.5-fold faster than (S)-OXA by rat and human liver microsomes, respectively. The specific activities (nmol of OXA hydrolyzed/mg microsomal protein/min) of liver microsomes in the hydrolysis of enantiomerically pure (R)-OXA were approximately 120 (rat) and 1,980 (human), and in the hydrolysis of enantiomerically pure (S)-OXA were 4 (rat) and 7 (human), respectively. In the incubation of rac-OXA with rat brain S9 fraction, (S)-OXA was hydrolyzed approximately 6-fold faster than (R)-OXA. Results also indicated an enantiomeric interaction in the hydrolysis of rac-OXA by esterases in rat and human liver microsomes; the presence of (R)-OXA stimulated the hydrolysis of (S)-OXA, whereas the presence of (S)-OXA inhibited the hydrolysis of (R)-OXA. In rat brain S9 fraction, the presence of (R)-OXA inhibited the hydrolysis of (S)-OXA, whereas the presence of (S)-OXA appeared to have stimulated the hydrolysis of (R)-OXA.  相似文献   

14.
ATPase activities were measured in 10 mM MgCl2, 5 mM ATP, 1 mM ADP, and 1 microM FCCP with submitochondrial particles from bovine heart that had been stimulated by delta mu H+-forming substrates and with particles whose natural inhibitor protein was partially removed by heating. The activities were not linear with time. With both particles, the rate of ATP hydrolysis in the 7-fold greater than that in the steady state. Pre-steady-state and steady-state kinetic studies showed that the decrease of ATPase activity was due to the binding of ADP in a high-affinity site of the enzyme (K0.5 of 10 microM). Inhibition of ATP hydrolysis was accompanied by the binding of approximately 1 mol of ADP/mol of particulate F1; 10 microM ADP gave half-maximal binding. ADP could be replaced by IDP, but with an affinity 50-fold lower (K0.5 of 0.5 mM). Maximal inhibition by ADP and IDP was achieved in less than 5 s. Inhibition was enhanced by uncouplers. Even in the presence of pyruvate kinase and phosphoenolpyruvate, the rates of hydrolysis were about 2.5-fold higher in the first seconds of reaction than in the steady state. This decrease of ATPase activity also correlated with the binding of nearly 1 mol of ADP/mol of F1. This inhibitory ADP remained bound to the enzyme after several thousand turnovers. Apparently, it is possible to observe maximal rates of hydrolysis only in the first few catalytic cycles of the enzyme.  相似文献   

15.
Homogeneous gene 5 protein of bacteriophage T7, a subunit of T7 DNA polymerase, catalyzes the stepwise hydrolysis of single-stranded DNA in a 3' leads to 5' direction to yield nucleoside 5'-monophosphates. The gene 5 protein itself does not hydrolyze duplex DNA. However, in the presence of Escherichia coli thioredoxin, the host-specified subunit of T7 DNA polymerase, duplex DNA is hydrolyzed in a 3' leads to 5' direction to yield nucleoside 5'-monophosphates. The apparent Km for thioredoxin in the reaction is 4.8 x 10(-8) M, a value similar to that for the apparent Km of thioredoxin in the complementation assay with gene 5 protein to restore T7 DNA polymerase activity. Both exonuclease activities require Mg2+ and a sulfhydryl reagent for optimal activity, and both activities are sensitive to salt concentration. Deoxyribonucleoside 5'-triphosphates inhibit hydrolysis by both exonuclease activities; hydrolysis of single-stranded DNA by the gene 5 protein is inhibited even in the absence of thioredoxin where there is less than 2% active T7 DNA polymerase. E. coli DNA binding protein (helix destabilizing protein) stimulates the hydrolysis of duplex DNA up to 9-fold under conditions where the hydrolysis of the single-stranded DNA is inhibited 4-fold.  相似文献   

16.
(+)-Thiocolchicine (2b) was prepared from (±)-colchicine (1) in a five-step reaction sequence that included chromatographic separation of appropriate camphanylated diastereomers. Acid hydrolysis of the (+)-diastereomer, followed by acetylation, yielded the desired product 2b. (+)-Thiocolchicine has 15-fold lower inhibitory activity against tubulin polymerization than (−)-thiocolchicine, and is 29-fold less potent for inhibiting growth of human Burkitt lymphoma cells. The enantiomer 2a, prepared from the (−)-camphanylated diastereomer, had potent activity in all assays comparable to that of (−)-thiocolchicine prepared by other methods. These results support the hypothesis that the proper configuration of colchicine-related compounds is an important requirement for their anti-tubulin action.  相似文献   

17.
To determine the origin of the overall approximately 10(16)-fold rate enhancement of DNA hydrolysis catalyzed by staphylococcal nuclease, the effects of single mutations that alter the amino acid residue at each of the essential positions Asp-21, Asp-40, Thr-41, Arg-35, and Arg-87 have been examined. Metal ion and substrate analogue binding were quantitated by EPR, by the paramagnetic effects of Mn2+ on 1/T1 of water protons, and by fluorescence titrations, yielding the six dissociation constants of the ternary enzyme-Mn2+-3',5'-pdTp and enzyme-Ca2+-3',5'-pdTp complexes. The kinetic parameters kcat, KACa, KMCa, KSDNA, KMDNA, and KIMn were determined by monitoring the rate of DNA hydrolysis. By thermodynamic and kinetic criteria, Mn2+ binds tightly to the Ca2+ binding site of the enzyme but is at least 36,000-fold less effective than Ca2+ in activating the enzyme. Alterations of the liganding residues in the D40G, D40E, T41P, D21E, and D21Y mutants generally weaken the binding of Ca2+ less than or equal to 12.7-fold and of Mn2+ less than or equal to 5.4-fold, exert little effect on the KSDNA or KMDNA (less than or equal to 3.2-fold), and raise the affinity of the enzyme and its metal complexes for 3',5'-pdTp by factors less than or equal to 13.5-fold. Small changes in the ligand geometry are also reflected in the Mn2+ complexes of the liganding mutants (i.e., those in which the metal-liganding amino acids have been altered) by decreases in the electron-spin relaxation time of Mn2+. Inhibitory effects on kcat are noted in all of the liganding mutants with D40E, D40G, T41P, D21E, and D21Y showing 12-, 30-, 37-, 1500-, and greater than or equal to 29,000-fold reductions, respectively. The greater than or equal 10(3)-fold larger inhibitory effects on kcat of enlarging Asp-21 as compared to enlarging Asp-40 are ascribed to the displacement of the adjacent water molecule which attacks the phosphodiester. Mutations of each of the essential Arg residues to Gly (R35G and R87G) reduce kcat by factors greater than or equal to 35,000 but weaken metal binding less than or equal to 9-fold.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Organophosphorus hydrolase detoxifies a broad range of organophosphate pesticides and the chemical warfare agents (CWAs) sarin and VX. Previously, rational genetic engineering produced OPH variants with 30-fold enhancements in the hydrolysis of CWA and their analogs. One interesting variant (H254R) in which the histidine at position 254 was changed to an arginine showed a 4-fold increase in the hydrolysis of demetonS (VX analog), a 14-fold decrease with paraoxon (an insecticide), and a 183-fold decrease with DFP (sarin analog). The three-dimensional structure of this enzyme at 1.9A resolution with the inhibitor, diethyl 4-methylbenzylphosphonate (EBP), revealed that the inhibitor did not bind at the active site, but bound exclusively into a well-defined surface pocket 12 A away from the active site. This structural feature was accompanied by non-competitive inhibition of paraoxon hydrolysis by EBP with H254R, in contrast to the native enzyme, which showed competitive inhibition. These parallel structure-function characteristics identify a functional, allosteric site on the surface of this enzyme.  相似文献   

19.
Two soluble cyclic nucleotide phosphodiesterase activities, designated Peak I (Mr = 216,000) and Peak II (Mr = 230,000), have been isolated from bovine adrenal medulla by DEAE-cellulose chromatography. Peak I has Ca2+-independent, cGMP-specific phosphodiesterase activity and Peak II has cGMP-stimulated cyclic nucleotide phosphodiesterase activity. Peak I hydrolyzes cGMP with hyperbolic kinetics and demonstrates a Km of 23 microM. Peak II hydrolyzes cGMP with hyperbolic kinetics but hydrolyzes cAMP with slightly sigmoidal kinetics and demonstrates Km values of 54 +/- 0.7 microM cGMP and 38 +/- 6 microM cAMP. Cyclic AMP and cGMP are competitive inhibitors of each other's hydrolysis, suggesting that these nucleotides may be hydrolyzed at the same catalytic site. Micromolar concentrations of cGMP cause a 5-fold stimulation of the hydrolysis of subsaturating concentrations of cAMP by the Peak II phosphodiesterase. Half-maximal activation occurs at 0.5 microM cGMP and the result of activation is a decrease in the apparent Km for cAMP. Stimulation of the hydrolysis of subsaturating concentrations of cGMP by cAMP was also detected; however, cAMP is a less potent activator of the enzyme than cGMP. Cyclic AMP causes a 1.5-fold stimulation of cGMP hydrolysis and half-maximal activation occurs at 2.5 microM cAMP.  相似文献   

20.
Cho JH  Kim DH  Lee KJ  Kim DH  Choi KY 《Biochemistry》2001,40(34):10197-10203
We have investigated the function of Tyr248 using bovine wild-type CPA and its Y248F and Y248A mutants to find that the K(M) values were increased by 4.5-11-fold and the k(cat) values were reduced by 4.5-10.7-fold by the replacement of Tyr248 with Phe for the hydrolysis of hippuryl-L-Phe (HPA) and N-[3-(2-furyl)acryloyl]-Phe-Phe (FAPP), respectively. In the case of O-(trans-p-chlorocinnamoyl)-L-beta-phenyllactate (ClCPL), an ester substrate, the K(M) value was increased by 2.5-fold, and the k(cat) was reduced by 20-fold. The replacement of Tyr248 with Ala decreased the k(cat) values by about 18- and 237-fold for HPA and ClCPL, respectively, demonstrating that the aromatic ring of Tyr248 plays a critical role in the enzymic reaction. The increases of the K(M) values were only 6- and 5-fold for HPA and ClCPL, respectively. Thus, the present study indicates clearly that Tyr248 plays an important role not only in the binding of substrate but also in the enzymic hydrolysis. The kinetic results may be rationalized by the proposition that the phenolic hydroxyl of Tyr248 forms a hydrogen bond with the zinc-bound water molecule, causing further activation of the water molecule by reducing its pK(a) value. The pH dependency study of k(cat) values and the solvent isotope effects also support the proposition. A unified catalytic mechanism is proposed that can account for the different kinetic behavior observed in the CPA-catalyzed hydrolysis of peptide and ester substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号