首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this report, we demonstrate that a complex mammalian protein containing multiple disulfide bonds is successfully expressed in an E.coli-based cell-free protein synthesis system. Initially, disulfide-reducing activities in the cell extract prevented the formation of disulfide bonds. However, a simple pretreatment of the cell extract with iodoacetamide abolished the reducing activity. This extract was still active for protein synthesis even under oxidizing conditions. The use of a glutathione redox buffer coupled with the DsbC disulfide isomerase and pH optimization produced 40 microg/mL of active urokinase protease in a simple batch reaction. This result not only demonstrates efficient production of complex proteins, it also emphasizes the control and flexibility offered by the cell-free approach.  相似文献   

2.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is an important cytokine in the mammalian immune system. It has been expressed in Escherichia coli with the same biological activity as the native protein. Here, we report the synthesis of a murine recombinant GM-CSF in an E. coli cell-free protein synthesis system with a high yield. Since there are two disulfide bonds in the native structure of GM-CSF, an oxidizing redox potential of the reaction mixture was required. By pretreating the cell extract with iodoacetamide (IAM), the reducing activity of the cell extract was inactivated, and upon further application of an oxidized glutathione buffer, most of the synthesized GM-CSF was found in its oxidized form. However, the GM-CSF thus formed showed low activity because of poor folding. With the addition of DsbC, the periplasmic disulfide isomerase from E. coli, a high yield of active GM-CSF was produced in the cell-free reaction. Finally, successful folding of the cell-free synthesized GM-CSF-his6 was confirmed by its cell-proliferation activity after purification with a Ni2+ chelating column.  相似文献   

3.
Disulfide reduction and sulfhydryl uptake by Streptococcus mutans   总被引:4,自引:0,他引:4       下载免费PDF全文
Incubation of Streptococcus mutans cells with certain disulfide compounds resulted in accumulation of reduced sulfhydryl compounds in the extracellular medium or in both the medium and the cells. Oxidized lipoic acid and lipoamide competed for reduction. At high concentrations, these compounds were reduced at rates comparable to that of glucose metabolism, and all of the increase in sulfhydryls was in the medium. Cystamine did not compete with these compounds for reduction but was also reduced at high rates and low apparent affinity, and all of the cysteamine produced from cystamine accumulated in the medium. In contrast, glutathione disulfide (GSSG) and L-cystine were reduced slowly but with high apparent affinity, and 60 to 80% of the increase in sulfhydryls was intracellular. NADH-dependent lipoic acid or lipoamide reductase activity was present in the particulate (wall-plus-membrane) fraction, whereas NADPH-dependent GSSG reductase activity was present in the soluble (cytoplasmic) fraction. Two transport systems for disulfide and sulfhydryl compounds were distinguished. GSSG, L-cystine, and reduced glutathione competed for uptake. L-Cysteine was taken up by a separate system that also accepted L-penicillamine and D-cysteine as substrates. Uptake of glutathione or L-cysteine, or the uptake and reduction of GSSG or L-cystine, resulted in up to a 10-fold increase in cell sulfhydryl content that raised intracellular concentrations to between 30 and 40 mM. These reductase and transport systems enable S. mutans cells to create a reducing environment in both the extracellular medium and the cytoplasm.  相似文献   

4.
The idiotype (Id)-granulocyte-macrophage colony-stimulating factor (GM-CSF) fusion proteins are potential vaccines for immunotherapy of B-cell lymphoma. In this study, four vaccine candidates were constructed by fusing murine GM-CSF to the amino- or carboxy-terminus of the 38C13 murine B-lymphocyte Id scFv with two different arrangements of the variable regions of the heavy chain and light chain (VL-VH and VH-VL). scFv (VH-VL) and GM-CSF/scFv fusion proteins were expressed in an Escherichia coli cell-free protein synthesis system. In order to promote disulfide bond formation during cell-free expression, cell extract was pretreated with iodoacetamide (IAM), and a sulfhydryl redox buffer composed of oxidized and reduced glutathione was added. The E. coli periplasmic disulfide isomerase, DsbC, was also added to rearrange incorrectly formed disulfide linkages. The 38C13 B-lymphocyte Id scFv was expressed with 30% of its soluble yield in active form (43 microg/ml) when tested with an anti-idiotypic mAb, S1C5, as the capture antibody in radioimmunoassay. It was found that the amino-terminal GM-CSF fusion proteins, GM-VL-VH and GM-VH-VL, showed much higher activity than the carboxy-terminal GM-CSF fusion proteins, VL-VH-GM and VH-VL-GM, in stimulating the cell proliferation of a GM-CSF-dependent cell line, NFS-60. Between the two amino-terminal GM-CSF fusion proteins, GM-VL-VH showed a higher total and soluble yield than GM-VH-VL.  相似文献   

5.
6.
We developed a novel method of producing proteins containing multiple disulfide bonds in a cell-free protein synthesis system. To provide an optimized redox potential during the synthesis of truncated plasminogen activator (rPA), we pretreated the E. coli S30 extract with an excess amount of oxidized glutathione based on the anticipation that the reducing potential of the S30 extract would be exhausted through the reduction of the oxidized glutathione molecules. As expected, it was found that the reducing activity of the S30 extract was remarkably decreased through the pretreatment, and active rPA was produced when the pretreated S30 extract was used after removing the residual glutathione molecules. In particular, compared to the method involving the iodoacetamide treatment of S30 extract, the present protocol was effective in producing active rPA during the batch reaction of cell-free protein synthesis.  相似文献   

7.
Enhancing multiple disulfide bonded protein folding in a cell-free system   总被引:6,自引:0,他引:6  
A recombinant plasminogen activator (PA) protein with nine disulfide bonds was expressed in our cell-free protein synthesis system. Due to the unstable and reducing environment in the initial E. coli-based cell-free system, disulfide bonds could not be formed efficiently. By treating the cell extract with iodoacetamide and utilizing a mixture of oxidized and reduced glutathione, a stabilized redox potential was optimized. Addition of DsbC, replacing polyethylene glycol with spermidine and putrescine to create a more natural environment, adding Skp, an E. coli periplasmic chaperone, and expressing PA at 30 degrees C increased the solubility of the protein product as well as the yield of active PA. Taken together, the modifications enabled the production of more than 60 microg/mL of bioactive PA in a simple 3-h batch reaction.  相似文献   

8.
Summary The glutathione reductase from E. coli was rapidly inactivated following aerobic incubation of the pure and cell-free extract enzymes with NADPH, NADH and other reductants. The inactivation of the pure enzyme depended on the time and temperature of incubation (t1/2 = 2 min at 37°C), and was proportional to the |INADPH|/|enzyme| ratio, reaching 50% in the presence of 0.3 M NADPH and 45 M NADH respectively, at a subunit concentration of 20 nM. Higher pyridine nucleotide concentrations were required to inactivate the enzyme from cell-free extracts. Two apparent pKa, corresponding to pH 5.8 and 7.3, were determined for the redox inactivation. The enzyme remained inactive even after eliminating the excess NADPH by gel chromatography. E. coli glutathione reductase was protected by oxidized and reduced glutathione against redox inactivation with both pure and cell-free extract enzymes. Ferricyanide and dithiothreitol protected only the pure enzyme, while NADP+ exclusively protected the cell-free extract enzyme. The inactive glutathione reductase was reactivated by treatment with oxidized and reduced glutathione, ferricyanide, and dithiothreitol in a time-and temperature-dependent process. The oxidized form of glutathione was more efficient and specific than the reduced form in the protection and reactivation of the pure enzyme.The molecular weight of the redox-inactivated E. coli glutathione reductase was similar to that of the dimeric native enzyme, ruling out aggregation as a possible cause of inactivation. A tentative model is discussed for the redox inactivation, involving the formation of an erroneous disulfide bridge at the glutathione-binding site.  相似文献   

9.
E Michel  K Wüthrich 《The FEBS journal》2012,279(17):3176-3184
We describe Escherichia?coli based cell-free production of milligram quantities of eukaryotic proteins containing native disulfide bonds. Using a previously described expression system, we systematically investigated the influence of redox potential variation in the reaction mixture and the impact of adding disulfide bond catalysts on soluble protein production. It is then shown that the optimized reaction conditions for native disulfide bond formation can be combined with the use of N-terminal fusion constructs with the GB1 domain for increased expression yields. The resulting cell-free system is suitable for stable-isotope labeling and does not require chemical pretreatment of the cell extract to stabilize the redox potential. For the human doppel protein, the mouse doppel protein and mouse interleukin-22 we obtained 0.3-0.7?mg of purified native protein per milliliter of reaction mixture. Formation of disulfide bonds was validated using the Ellman assay, and native folding of the three proteins was monitored by NMR and CD spectroscopy. Structured digital abstract ? mIL22?and?mIL22?bind?by?nuclear magnetic resonance?(View interaction).  相似文献   

10.
Hydroperoxide metabolism in diverse pathogens is reviewed under consideration of involved enzymes as potential drug targets. The common denominator of the peroxidase systems of Trypanosoma, Leishmania, Plasmodium, and Mycobacterium species is the use of NAD(P)H to reduce hydroperoxides including peroxynitrite via a flavin-containing disulfide reductase, a thioredoxin (Trx)-related protein and a peroxidase that operates with thiol catalysis. In Plasmodium falciparum, thioredoxin- and glutathione dependent systems appear to be linked via glutaredoxin and plasmoredoxin to terminal thioredoxin peroxidases belonging to both, the peroxiredoxin (Prx) and glutathione peroxidase (GPx) family. In Mycobacterium tuberculosis, a catalase-type peroxidase is complemented by the typical 2-C-Prx AhpC that, in contrast to most bacteria, is reduced by TrxC, and an atypical 2-C-Prx reduced by TrxB or C. A most complex variation of the scheme is found in trypanosomatids, where the unique redox metabolite trypanothione reduces the thioredoxin-related tryparedoxin, which fuels Prx- and GPx-type peroxidases as well as ribonucleotide reductase. In Trypanosoma brucei and Leishmania donovani the system has been shown to be essential for viability and virulence by inversed genetics. It is concluded that optimum efficacy can be expected from inhibitors of the most upstream components of the redox cascades. For trypanosomatids attractive validated drug targets are trypanothione reductase and trypanothione synthetase; for mycobacteria thioredoxin reductase appears most appealing, while in Plasmodium simultaneous inhibition of both the thioredoxin and the glutathione pathway appears advisable to avoid mutual substitution in co-substrate supply to the peroxidases. Financial and organisational needs to translate the scientific progress into applicable drugs are discussed under consideration of the socio-economic impact of the addressed diseases.  相似文献   

11.
Escherichia coli alkaline phosphatase (AP) and human lysozyme (h-LYZ), which contain two and four disulfide bonds, respectively, were expressed in a cell-free protein synthesis system constructed from Spodoptera frugiperda 21 (Sf21) cells. AP was expressed in a soluble and active form using the insect cell-free system under non-reducing conditions, and h-LYZ was expressed in a soluble and active form under non-reducing conditions after addition of reduced glutathione (GSH), oxidized glutathione (GSSG), and protein disulfide isomerase (PDI). The in vitro synthesized proteins were purified by means of a Strep-tag attached to their C termini. Approximately 41 microg AP and 30 microg h-LYZ were obtained from 1 mL each of the reaction mixture. The efficiency of protein synthesis approached that measured under reducing conditions. Analysis of the disulfide bond arrangements by MALDI-TOF MS showed that disulfide linkages identical to those observed in the wild-type proteins were formed.  相似文献   

12.
Deoxycytidylate kinase (EC 2.7.4.14) in cell-free extract of rat liver, whose activity was highly dependent on the presence of high concentrations of thiol compound during incubation prior to assay, could be activated by substituting 0.1 to 0.2 mM NADPH for the thiol. Partial purification of the extract resulted in a separation of components indicating that the NADPH-dependent activation system was composed of, other than kinase itself, at least two protein factors: one was heat-stable and the other was indistinguishable from NADPH-dependent disulfide reductase [4]. Similarity of this system to thioredoxin-thioredoxin reductase system [7] is noted.  相似文献   

13.
Glutathione reductase (NAD(P)H : oxidised-glutathione oxidoreductase, EC 1.6.4.2) was purified from baker's yeast by a new procedure involving affinity chromatography on 2',5'-ADP-Sepharose 4B. The yield was 65% of essentially homogeneous enzyme. The activity was assayed with both glutathione disulfide (GSSG) and the mixed disulfide of coenzyme A and glutathione (CoAssg). The two disulfide substrates gave coinciding activity profiles and a constant ratio of the activities in different chromatographic and electrophoretic systems. No evidence was obtained for the existence of a reductase specific for CoASSG distinct from glutathione reductase. It is concluded that normal baker's yeast contains a single reductase active with both GSSG and CoASSG.  相似文献   

14.
Brevibacillus choshinensis (formerly Bacillus brevis) is a protein-hyperproducing bacterium and has been used for commercial protein production. Here, we cloned thioredoxin (trxA) and thioredoxin reductase (trxB) genes from B. choshinensis, and expressed the gene products in Escherichia coli with an amino-terminal hexa-His-tag for purification and characterization. His-TrxA and His-TrxB were purified to homogeneity with one-step Ni-NTA affinity column chromatography, and the two recombinant proteins showed identical specific activity with or without removal of the amino-terminal His-tag, indicating that the extrasequence containing the hexa-His-tag did not affect their enzymatic activities. The E. coli expression system used here resulted in a 40-fold increase in production of His-TrxB protein compared to the level of native TrxB produced in non-recombinant B. choshinensis cells. TrxA and TrxB proteins with carboxy-terminal His-tag (TrxA-His and TrxB-His) were successfully expressed in B. choshinensis and were purified by Ni-NTA column chromatography. Co-expression of TrxA-His with recombinant human epidermal growth factor (hEGF) in B. choshinensis promoted the extracellular production of hEGF by up to about 200%.  相似文献   

15.
In traditional cell-free protein synthesis reactions, the energy source (typically phosphoenolpyruvate (PEP) or creatine phosphate) is the most expensive substrate. However, for most biotechnology applications glucose is the preferred commercial substrate. Previous attempts to use glucose in cell-free protein synthesis reactions have been unsuccessful. We have now developed a cell-free protein synthesis reaction where PEP is replaced by either glucose or glucose-6-phosphate (G6P) as the energy source, thus allowing these reactions to compete more effectively with in vivo protein production technologies. We demonstrate high protein yields in a simple batch-format reaction through pH control and alleviation of phosphate limitation. G6P reactions can produce high protein levels ( approximately 700 microg/mL of chloramphenical acetyl transferase (CAT)) when pH is stabilized through replacement of the HEPES buffer with Bis-Tris. Protein synthesis with glucose as an energy source is also possible, and CAT yields of approximately 550 mug/mL are seen when both 10 mM phosphate is added to alleviate phosphate limitations and the Bis-Tris buffer concentration is increased to stabilize pH. By following radioactivity from [U-(14)C]-glucose, we find that glucose is primarily metabolized to the anaerobic products, acetate and lactate. The ability to use glucose as an energy source in cell-free reactions is important not only for inexpensive ATP generation during protein synthesis, but also as an example of how complex biological systems can be understood and exploited through cell-free biology.  相似文献   

16.
Botulinum neurotoxin serotype B (BoNT/B)-specific Fab was expressed in a cell-free protein synthesis system derived from an E. coli extract. The cell-free synthesized antibody fragment was found to be effective in neutralizing the toxicity of BoNT/B in animal studies. Expression of functional Fab required an appropriately controlled and stably maintained redox potential. Under an optimized redox condition, the cell extract, whose disulfide reducing activity had been exhausted, could generate bio-functional Fab molecules. Use of a cell extract enriched with molecular chaperones (GroEL/ES) and disulfide bond isomerases were effective in obtaining larger quantities of functional Fab. Under the optimized reaction conditions, approximately 30 μg of functional Fab was obtained after purification from 1 mL reaction mixture.  相似文献   

17.
African trypanosomes contain a cyclic derivative of oxidized glutathione, N1,N8-bis(glutathionyl)spermidine, termed trypanothione. This is the substrate for the parasite enzyme trypanothione reductase, a key enzyme in disulfide/dithiol redox balance and a target enzyme for trypanocidal therapy. Trypanothione reductase from these and related trypanosomatid parasites is structurally homologous to host glutathione reductase but the two enzymes show mutually exclusive substrate specificities. To assess the basis of host vs parasite enzyme recognition for their disulfide substrates, the interaction of bound glutathione with active-site residues in human red cell glutathione reductase as defined by prior X-ray analysis was used as the starting point for mutagenesis of three residues in trypanothione reductase from Trypanosoma congolense, a cattle parasite. Mutation of three residues radically alters enzyme specificity and permits acquisition of glutathione reductase activity at levels 10(4) higher than in wild-type trypanothione reductase.  相似文献   

18.
The auxin-biosynthetic pathway from L-tryptophan to indole-3-aceticadd via indole-3-acetamide (IAM), found in plant-pathogenicbacteria such as Agrobacterium tumefaciens and Pseudomonas savastanoi,has not been found in plants. We attempted to detect the enzymaticactivities for this pathway in cell-free systems from varioustissues of trifoliata orange (Poncirus trifoliata Rafin.). Ahigh level of activity of LAM hydrolase, which catalyzes theconversion of IAM to indole-3-acetic acid, was observed in acrude extract prepared from young fruits one week after fullbloom. Using -naphthaleneacetamide as a competitor of IAM hydrolase,a simple assay system was developed for the detection of theconversion of L-tryptophan to IAM (tryptophan monooxygenaseactivity). When this system was used to assay cell-free extractsof young fruit of P. trifoliata, the conversion of L-tryptophanto IAM was clearly demonstrated by the presence of IAM amongreaction products, as demonstrated by GC/MS analysis and theincorporation of 14C-labeled L-tryptophan into an IAM fraction.This is the first report indicating the presence of an auxin-biosyntheticpathway via IAM in P. trifoliata. Furthermore, it is shown thatboth enzyme activities in auxin biosynthesis increased transientlyduring fruit development. (Received October 9, 1992; Accepted November 2, 1992)  相似文献   

19.
A simple electrophoresis system for multiple agarose slab gels   总被引:2,自引:0,他引:2  
  相似文献   

20.
Due to its small size and intense luminescent signal, Gaussia princeps luciferase (GLuc) is attractive as a potential imaging agent in both cell culture and small animal research models. However, recombinant GLuc production using in vivo techniques has only produced small quantities of active luciferase, likely due to five disulfide bonds being required for full activity. Cell-free biology provides the freedom to control both the catalyst and chemical compositions in biological reactions, and we capitalized on this to produce large amounts of highly active GLuc in cell-free reactions. Active yields were improved by mutating the cell extract source strain to reduce proteolysis, adjusting reaction conditions to enhance oxidative protein folding, further activating energy metabolism, and encouraging post-translational activation. This cell-free protein synthesis procedure produced 412 μg/mL of purified GLuc, relative to 5 μg/mL isolated for intracellular Escherichia coli expression. The cell-free product had a specific activity of 4.2×1024 photons/s/mol, the highest reported activity for any characterized luciferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号