共查询到20条相似文献,搜索用时 15 毫秒
1.
Y. Suyama Y. Mukai T. Kondo 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1996,92(3-4):292-296
Aneuploids of sugi (Cryptomeria japonica) were found in the open-pollinated progenies of triploidplus tree clones. Seven trisomics and one hypotriploid were used to assign the chromosomes to the RFLP linkage groups constructed previously. The Southern blots containing their genomic DNA were hybridized with the labeled DNA clones corresponding to the loci in the linkage map. The additional dosage in autoradiographs showed that the cloned DNA fragment was located on the extra chromosome in the trisomics. On the other hand, the extra chromosome in two trisomics and the chromosome lacking the triplet in the hypotriploid were cytologically identified as chromosome 10 by consistent presence of a secondary constriction in the proximal region of its short arm. As a result, three linkage groups were assigned to their respective chromosomes, namely chromosome 10 and two other chromosomes. 相似文献
2.
The two related Petunia species, P. axillaris and P. integrifolia, are sympatric at various locations in South America but do not hybridise. Divergent pollinator preferences are believed to be in part responsible for their reproductive isolation. The volume of nectar produced and several components of flower morphology might contribute to pollinator-dependant reproductive isolation. In this study, we aimed to identify the genetic changes underlying the quantitative differences observed between these two Petunia species in flower size and nectar volume. We mapped quantitative trait loci (QTL) responsible for the different phenotypes of P. axillaris and P. integrifolia in an inter-specific backcross population. QTL of small to moderate effect control the differences in flower size and volume of nectar. In addition, we observed strong suppression of meiotic recombination in Petunia, even between closely related species, which precluded a fine resolution of QTL mapping. Thus, our data suggest that flower size and nectar volume are highly polygenic. They are likely to have evolved gradually through pollinator-mediated adaptation or reinforcement, and are not likely to have been primary factors in early steps of pollinator isolation of P. axillaris and P. integrifolia. 相似文献
3.
S. Izhar Y. Tabib D. Swartzberg 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1984,68(5):455-457
Summary The goal in this experiment was to achieve direct plasmon transfer via cell fusion. Two lines were used — a normal fertile line of P. hybrida, and a cytoplasmic male sterile (cms) line with the nuclear background of P. parodii. Two plants phenotypically similar to the original male sterile line were developed from protoplasts, but instead of being cms they were male fertile. On the other hand, two plants typical of the original normal line developed from protoplasts, but they were cms instead of fertile. Chromosome counts were done and in all cases the expected diploid number (=14) was found. Genetic analysis showed that sorting out of cms and fertile segregants was evident in the first and second backcross of the cms cybrids. The fertile type cybrids were stable fertile for several generations of selfing and proper backcrossing. These results are discussed in the light of an earlier fusion experiment in which these two parental lines were involved.Contribution from the Department of Plant Genetics and Breeding, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. No. 991-E, 1984 series 相似文献
4.
F. Weber-Lotfi L. Maréchal-Drouard O. Folkerts M. Hanson J. M. Grienenberger 《Plant molecular biology》1993,21(2):403-407
22 tRNA genes corresponding to 17 tRNA species were localized on the master circle of Petunia hybrida mitochondrial (mt) DNA. Genes for trnN, trnM, trnS-GGA, trnW and trnH are of the chloroplast-like type and presumably originate from promiscuous chloroplast (cp) DNA sequences inserted into the petunia mitochondrial genome. A comparison of the mt tRNAs or tRNA genes population present in two monocotyledonous plants (wheat and maize) and two dicotyledonous plants (petunia and potato) show slight differences in the genetic origin of individual tRNAs. The organization of the petunia mt tRNA genes as well as the number of tRNA gene copies, compared to other plant species, is discussed. 相似文献
5.
B. M. van den Berg H. Hartings F. Bianchi H. J. W. Wijsman 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1984,68(3):265-268
Summary Antibodies were raised against the peroxidases encoded by the allele prxA1 to determine the specific activities of the peroxidases encoded by the alleles prxA1, prxA2, prxA3, and prxA5. The results from double diffusion experiments indicated that all peroxidases encoded by the four alleles are antigenically identical. By rocket immuno electrophoresis it was shown that the peroxidases encoded by the alleles prxA1, prxA2, prxA3, and prxA5 have different specific activities. The results presented are discussed in relation to differential expression of the alleles involved. 相似文献
6.
K. Glimelius H. T. Bonnett 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1986,72(6):794-798
Summary Protoplasts of a chloroplast-defective cultivar of Nicotiana tabacum were fused with gamma-irradiated protoplasts of Petunia hybrida. Over 100 photoautotrophic plants were regenerated; of these 94 were tested for Petunia chloroplast traits and all but one had Petunia chloroplasts based on their sensitivity to the fungal toxin, tentoxin. Chloroplast DNA was analysed for 3 of the sensitive plants and was shown to be identical to Petunia chloroplast DNA. Most of the plants (about 70%) appeared to be normal N. tabacum plants, based on morphology and chromosome number. They were fully fertile with normal pollen viability, seed set, and seed viability. The remaining 30% of the plants showed varying degrees of vegetative and reproductive abnormalities.The techniques of somatic cell genetics have led to many possible nuclear-organellar combinations that may be considered as cybrids. In this paper, we use the term to include the combination of nucleus from one species and chloroplast from another species 相似文献
7.
B. M. van den Berg T. Hendriks H. J. W. Wijsman 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1982,64(1):75-81
Summary By starch gel electrophoresis three mobility variants of a cathodic moving doublet of bands, encoded by the structural gene prxC, were detected in all organs of flowering petunias. In root tissue two of the variants showed a lower electrophoretic mobility than in other organs. During development of flower buds the PRXc enzymes showed an increase in mobility. The gene prxC was located on chromosome IV by showing linkage to the genes An3 and Dw1, by trisomic segregation, and by the construction of triply heterozygous trisomics IV. The gene order on chromosome IV is B1-An3/Dw1-prxC. It was concluded that the temporal programming difference in the expression of the alleles prxC2 and prxC3 is caused by internal site mutation. Analysis of progeny obtained by crossing of lines to the trisomic IV with genotype prxC1/C1/C2 showed differential expression of the two prxC1 alleles of the trisomic IV. 相似文献
8.
In flower buds of the white flowering mutant W19 of Petunia hybrida four biologically active dihydroflavonol intermediates-dihydroquercetin-7-glucoside, dihydroquercetin-4-glucoside, dihydroquercetin, and dihydrokaempferol-7-glucoside-are accumulated. When dihydroquercetin was supplied to in vitro cultured corollas of the white flowering mutant W18, a mixture of cyanidin and delphinidin glycosides was produced, cyanidin-3-glucoside being the major pigment. The quantity of dihydroquercetin accumulated in W19 is very small, but this compound appears to be a more direct precursor of anthocyanins than the glucosides of dihydrokaempferol and dihydroquercetin. The conditions for pigment synthesis in W18 were optimalized. The quantitative uptake of dihydroquercetin was also studied. It was demonstrated that ca. 1/3 of the quantity present in the culture solution entered the corolla. From the absorbed dihydroquercetin only 14% was converted into anthocyanins. Complementation experiments to determine the biosynthetic sequence of the anthocyanin genes An1, An2, and An3 indicated that the genes An1 and An2 are indistinguishable by this technique.Abbreviation DHQ
(+) dihydroquercetin 相似文献
9.
A. W. Schram A. W. Timmerman P. de Vlaming L. M. V. Jonsson G. J. H. Bennink 《Planta》1981,153(5):459-461
During the biosynthesis of anthocyanins in Petunia hybrida, the 3-hydroxyl group is glucosylated. Their supposed biosynthetic precursors, the dihydroflavonols, are glucosylated at the 7 or 4 positions. The question arose of whether these glucosides or the aglucones act as a substrate in anthocyanin synthesis. Using isolated flower buds of white flowering mutants that were blocked in an earlier step of biosynthesis, it was found that anthocyanin-3-glucosides and dihydroquercetin-7-glucoside were synthesized if dihydroquercetin, dihydroquercetin-7-glucoside, or dihydroquercetin-4-glucoside were used as precursors in these experiments. Intracellular dihydroquercetin-glucosides were not used as a substrate for anthocyanin synthesis. The results are explained by deglucosylation of dihydroquercetin-glucosides during uptake by isolated flower limbs. Dihydroquercetin-7-glucoside, formed intracellularly, is not available as a precursor for anthocyanins. We conclude that the aglucone form of dihydroquercetin acts as a substrate in anthocyanin biosynthesis.Abbreviations dHO
dihydroquercetin
- dHQ-7=g
dihydroquercetin-7-glucoside
- dHQ-4-g
dihydroquercetin-4-glucoside 相似文献
10.
The structural events accompanying the maturation of the pistil of Petunia hybrida have been studied in detail, together with the changes in the protein spectrum of the transmitting tissue that occur over this period. These events have been considered in terms of the acquisition of the self-incompatibility response, which occurs while the pistil is enclosed in the bud. Apart from several minor differences, the young pistils differ only from the mature in that their transmitting tissue cells fail to respond to pollination by undergoing characteristic ultrastructural changes. Data from electrofocusing indicates that several proteins, mobilised in the mature transmitting tissue some three hours after pollination, are absent from bud pistils. It is proposed that the pollination-stimulated release of certain polypeptides, believed to be involved in the self-incompatibility response, does not take place in young pistils. These observations are considered with reference to currently-accepted models of the operation of the self-incompatibility mechanism in Petunia. 相似文献
11.
J. B. Power S. F. Berry J. V. Chapman E. C. Cocking K. C. Sink 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1979,55(3-4):97-99
Summary Somatic hybrid plants regenerated following the fusion of leaf mesophyll protoplasts of Petunia parodii with those isolated from a cell suspension of albino P. inflata. These two species exhibit a unilateral cross-incompatability with a pre-zygotic mode of reproductive isolation preventing hybridizations with P. inflata as the maternal parent. Selection of somatic hybrids relied on the fact that unfused or homokaryon protoplasts of P. parodii did not develop beyond the cell colony stage while those of the putative somatic hybrids and albino P. inflata parent produced callus. Green somatic hybrid calluses were readily identified against the white background of P. inflata following complementation to chlorophyll synthesis proficiency and continued growth in hybrid cells. Shoots, and ultimately flowering plants, were identified as somatic hybrids based on their floral morphology and colour, chromosome number and the fact that they segregated for parental characters. The frequency of somatic hybrid production was comparable to that previously established for two sexually compatible Petunia species. 相似文献
12.
R. F. Santos W. Handro 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1983,66(1):55-60
Summary Quantitative variation in seven morphological characteristics (leaf length and width, leaf length/ width ratio, flower, petal and stomata length, and number of chloroplasts in guard cells) were studied in Petunia hybrida plants regenerated from anther tissue culture and belonging to four different classes of ploidy (2n, 2n–3n, 3n–2n, 4n–8n). Results showed that leaf size is not a good characteristic for discriminating between plants of different ploidy — flower and stomata characteristics being more adequate for this purpose. After applying stepwise discriminant analysis the association chloroplast number — leaf length/width ratio — petal length was verified to be more appropriate for the discrimination of ploidy classes. 相似文献
13.
H. A. S. Hussein A. Misiha 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1979,54(1):17-25
Summary Flowering time, plant height and flower size in Petunia hybrida Hort. (multiflora type) have been genetically analysed by means of a 5 × 5 diallel cross. The results indicated that: (1) the three characters are controlled by additive-dominance polygenic systems. The contribution of the additive gene actions to the genetic variance of flowering time was relatively higher than that of dominance. The reverse situation was found for plant height and flower size. (2) Dominance is ambi-directional for the three characters. Ratios of average dominance were in the range of partial for flowering-time, complete for plant height and overdominance for flower size. (3) Number of genes (or gene groups) controlling the characters are about 3, 3 and 5 for flowering time, plant height and flower size: respectively, (4) Heritability estimates are 0.84, 0.88 and 0.89 in the broad-sense and 0.40, 0.49 and 0.37 in the narrow-sense, for flowering time, plant height and flower size; respectively. (5) Heterosis as percent increase of the mean F1-hybrid above the higher parent, or decrease below the lower parent, was observed for flowering time (+ 9.7% to +13.3%), for plant height (–13.6% to –20.3%) and for flower size (+2.5% to +16.0%). 相似文献
14.
H. S. M. Huits H. J. W. Wijsman R. E. Koes A. G. M. Gerats 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1995,91(1):110-117
The line W138 of Petunia hybrida has variegated flowers because it is homozygous for the mutable an1-W138 allele. Excision of the element, causing instability, depends on the presence of the activatorAct1. The previously characterised non-autonomous element dTph1 excises from the dfrC gene in response to Act1. This implies that both non-autonomous elements belong to the same transposable element family. In a range of distantly related cultivars we could detect a single functional Act1 element. Linkage analysis for 11 of these lines showed that Act1 was located on chromosome I in all cases, indicating that the element might be fixed in the genome. A group of cultivars that did not exhibit Act1 activity could be traced back to a recent common origin (Rose of Heaven). Cultivars within this group presumably harbour the same inactivated Act1 element. Among the lines tested were 7 lines representing the two species (P. axillaris and P. integrifolia) from which P. hybrida originated. None of these exhibited Act1 activity. We assume that Act1 is present in an inactive state in these lines and that it was activated upon interspecific crossing. In general, lines representing the two parental species and P. hybrida cultivars contain between 5 and 25 dTph1 elements. The lines R27 and W138, however, contain significantly more dTph1 elements (> 50) than all other lines. 相似文献
15.
In Petunia inflata, a species with gametophytic self-incompatibility, pollination triggers two phases of ethylene production by the pistil, the first of which peaks 3 hours after pollination with compatible or incompatible pollen. To investigate the physiological significance of the first phase of ethylene production, pollinated flowers were treated with 2,5-norbornadiene (NBD), an inhibitor of ethylene action. Treatment with NBD reduced pollen tube growth in a dose-dependent manner during the first six hours after pollination; however, pollen tube growth was insensitive to NBD if the treatment was applied 6 hours or more after pollination. Simultaneous application of exogenous ethylene substantially offset the inhibitory effects of NBD in flowers pollinated for 4 hours. Another inhibitor of ethylene action, 1-methylcyclopropene (1-MCP), also produced a strong inhibition of pollen tube growth during the first six hours of pollination. The experiments with 1-MCP pretreatment indicate that pistil tissues are the primary target of the pollination-induced ethylene. 相似文献
16.
Kulcheski FR Muschner VC Lorenz-Lemke AP Stehmann JR Bonatto SL Salzano FM Freitas LB 《Genetica》2006,126(1-2):3-14
Representatives from 11 Petunia Jussieu species in south and southeast Brazil were compared with two Calibrachoa La Llave & Lex., one Bouchetia Dunal, and two Nierembergia Ruiz & Pav. taxa in relation to DNA molecular variability. A total of 4532 base pairs related to one nuclear, five plastidial
and one mitochondrial systems was investigated. Petunia and Calibrachoa, although separated among themselves, clearly differentiate from the two other genera. Despite the fact that the Petunia species do not show marked molecular differences, they can be separated in two complexes, in good agreement with altitude
data. Petunia + Calibrachoa should have diverged from other clades at about 25 million years before present. 相似文献
17.
Genetic mapping and molecular characterization of the self-incompatibility (S) locus in Petunia inflata 总被引:4,自引:0,他引:4
Gametophytic self-incompatibility (SI) possessed by the Solanaceae is controlled by a highly polymorphic locus called the S locus. The S locus contains two linked genes, S-RNase, which determines female specificity, and the as yet unidentified pollen S gene, which determines male specificity in SI interactions. To identify the pollen S gene of Petunia inflata, we had previously used mRNA differential display and subtractive hybridization to identify 13 pollen-expressed genes that showed S -haplotype-specific RFLP. Here, we carried out recombination analysis of 1205 F2 plants to determine the genetic distance between each of these S -linked genes and S-RNase. Recombination was observed between four of the genes (3.16, G211, G212, and G221) and S-RNase, whereas no recombination was observed for the other nine genes (3.2, 3.15, A113, A134, A181, A301, G261, X9, and X11). A genetic map of the S locus was constructed, with 3.16 and G221 delimiting the outer limits. None of the observed crossovers disrupted SI, suggesting that all the genes required for SI are contained in the chromosomal region defined by 3.16 and G221. These results and our preliminary chromosome walking results suggest that the S locus is a huge multi-gene complex. Allelic sequence diversity of G221 and 3.16, as well as of 3.2, 3.15, A113, A134 and G261, was determined by comparing two or three alleles of their cDNA and/or genomic sequences. In contrast to S-RNase, all these genes showed very low degrees of allelic sequence diversity in the coding regions, introns, and flanking regions. 相似文献
18.
Isolation and incubation conditions were established for Petunia hybrida chloroplasts capable of performing in vitro protein and RNA synthesis. Under these conditions, chloroplasts from leaves as well as from the non-photoautotrophic mutant green cell culture AK-2401 are able to incorporate labeled amino acids into polypeptides. Intact chloroplasts can use light as an energy source; photosynthetically-inactive chloroplasts require the addition for ATP for this protein synthesis. Sodium dodecylsulphate polyacrylamide slab gel electrophoresis shows that in isolated leaf chloroplasts at least twenty-five radioactive polypeptide species are synthesized. The three major products synthesized have molecular weights of 52,000, 32,000 and 17,000. Coomassie brilliant-bluestained polypeptide patterns from plastids isolated from the mutant green cell culture AK-2401 differ considerably from those obtained from leaf chloroplasts. The pattern of radioactive polypeptides synthesized in these isolated cell culture plastids also shows differences. These results indicate that the difference in developmental stage observed between plastids from the cell culture AK-2401 and leaves is reflected in an altered expression of the chloroplast DNA.Abbreviations CAP
D-threo-chloramphenicol
- 2,4-D
2,4-dichlorophenoxyacetic acid
- DCMU
3-(3,4-dichlorophenyl)-1,1-dimethylurea
- RuBPCase
ribulose-1,5-bisphosphate carboxylase
- SDS
sodium dodecylsulphate 相似文献
19.
Carol A. Auer Michel Laloue Jerry D. Cohen Todd J. Cooke 《Plant Growth Regulation》1992,11(2):105-114
Benzyladenine (BAP) uptake and metabolism were characterized during the key stages of shoot organogenesis in leaf explants of Petunia MD1. Using leaf explant transfer experiments, it was shown that exposure to 2.2 M BAP for 6, 8 or 10 days induced shoot formation on 27, 80 and 100% of the explants respectively, with a concomitant increase in the number of shoots per explant. BAP uptake and metabolism were characterized in leaf explants after 1, 3, 6 or 10 days exposure to [3H]BAP or 10 days exposure plus an additional 2 days on basal medium (10+2). BAP and 9--D-ribofuranosyl-BAP ([9R]BAP) were detected at days 1 and 3 only. Therefore, the BAP free base was not detectable during the shoot induction period between days 6 and 10, as defined by leaf transfer experiments. The BAP ribotide pool was largest on day 1 and decreased to day 10+2. It is possible that the BAP ribotide pool provided either the active cytokinin itself or acted as a short-term storage form for the active cytokinin in petunia shoot organogenesis. Other metabolites detected in petunia leaf tissue included 7--D-glucopyranosyl-BAP ([7G]BAP), 9--D-glucopyranosyl-BAP ([9G]BAP) and an unidentified metabolite C.Abbreviations BAP
benzyladenine
- [7G]BAP
7--D-glucopyranosyl-BAP
- [9G]BAP
9--D-glucopyranosyl-BAP
- [9R]BAP
9--D-ribofuranosyl-BAP
- [9R-5P]BAP
5-monophosphate of [9R]BAP
- [9R-5PP]BAP
5-diphosphate of [9R]BAP
- [9R-5PPP]BAP
5-triphosphate of [9R]BAP
- TEA
Triethylamine
This research was supported in part by NSF Grant DCB-8917378 to J.D.C. and USDA-CRGO Grant 89-37261-4791 to T.J.C. 相似文献
20.
Petunia hybrida mutants, homozygous recessive for one of the genes An1, An2, An6, or An9 do not show anthocyanin synthesis in in vitro complementation experiments per se (see also Kho et al. 1977). Extracts of flowers of these mutants all provoke anthocyanin synthesis in isolated petals of an an3an3 mutant. Mutants homozygous recessive for one of the genes An1, An2, An6, or An9 and homozygous recessive for F1 accumulate dihydroflavonols in comparable amounts. The synthesis of dihydromyricetin is blocked in an1an1 mutants, which indicates a regulating effect of the gene An1 on the gene Hfl. Similar mutants, but dominant for F1, accumulate flavonols (kaempferol and quercetin) instead of dihydroflavonols. Myricetin is accumulated in minor amounts and not at all in an1an1 mutant. Furthermore, the synthesis of this flavonol is not controlled by the gene F1. The synthesis of cyanidin (derivatives) is greatly reduced when flavonols are synthesized (F1 dominant). In mutants dominant for Ht1 and Hf1 and thus able to synthesize cyanidin (derivatives) and delphinidin (derivatives), predominantly delphinidin (derivatives) are synthesized. The results indicate that kaempferol (derivatives), quercetin (derivatives), and delphinidin (derivatives) are the main endproducts of flavonoid biosynthesis in Petunia hybrida. 相似文献