首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allosteric interactions regulate substrate channeling in Salmonella typhimurium tryptophan synthase. The channeling of indole between the alpha- and beta-sites via the interconnecting 25 A tunnel is regulated by allosteric signaling arising from binding of ligand to the alpha-site, and covalent reaction of l-Ser at the beta-site. This signaling switches the alpha- and beta-subunits between open conformations of low activity and closed conformations of high activity. Our objective is to synthesize and characterize new classes of alpha-site ligands (ASLs) that mimic the binding of substrates, 3-indole-d-glycerol 3'-phosphate (IGP) or d-glyceraldehyde 3-phosphate (G3P), for use in the investigation of alpha-site-beta-site interactions. The new synthesized IGP analogues contain an aryl group linked to an O-phosphoethanolamine moiety through amide, sulfonamide, or thiourea groups. The G3P analogue, thiophosphoglycolohydroxamate, contains a hydroxamic acid group linked to a thiophosphate moiety. Crystal structures of the internal aldimine complexed with G3P and with three of the new ASLs are presented. These structural and solution studies of the ASL complexes with the internal aldimine form of the enzyme establish the following. (1) ASL binding occurs with high specificity and relatively high affinities at the alpha-site. (2) Binding of the new ASLs slows the entry of indole analogues into the beta-site by blocking the tunnel opening at the alpha-site. (3) ASL binding stabilizes the closed conformations of the beta-subunit for the alpha-aminoacrylate and quinonoid forms of the enzyme. (4) The new ASLs exhibit allosteric properties that parallel the behaviors of IGP and G3P.  相似文献   

2.
Ferrari D  Niks D  Yang LH  Miles EW  Dunn MF 《Biochemistry》2003,42(25):7807-7818
The allosteric interactions that regulate substrate channeling and catalysis in the tryptophan synthase bienzyme complex from Salmonella typhimurium are triggered by covalent reactions at the beta-site and binding of substrate/product to the alpha-site. The transmission of these allosteric signals between the alpha- and beta-catalytic sites is modulated by an ensemble of weak bonding interactions consisting of salt bridges, hydrogen bonds, and van der Waals contacts that switch the subunits between open and closed conformations. Previous work has identified a scaffolding of salt-bridges extending between the alpha- and beta-sites consisting of alphaAsp 56, betaLys 167, and betaAsp 305. This work investigates the involvement of yet another salt bridging interaction involving the betaAsp 305-betaArg 141 pair via comparison of the spectroscopic, catalytic, and allosteric properties of the betaD305A and betaR141A mutants with the behavior of the wild-type enzyme. These mutations were found to give bienzyme complexes with impaired allosteric communication. The betaD305A mutant also exhibits altered beta-site substrate reaction specificity, while the catalytic activity of the betaR141A mutant exhibits impaired beta-site catalytic activity. The >25-fold activation of the alpha-site by alpha-aminoacrylate Schiff base formation at the beta-site found in the Na(+) form of the wild-type enzyme is abolished in the Na(+) forms of both mutants. Replacing Na(+) by NH(4)(+) or Cs(+) restores the betaD305A to a wild-type-like behavior, whereas only partial restoration is achieved with the betaR141A mutant. These studies establish that the betaD305-betaR141 salt bridge plays a crucial role both in the formation of the closed conformation of the beta-site and in the transmission of allosteric signals between the alpha- and beta-sites that switch the alpha-site on and off.  相似文献   

3.
In the tryptophan synthase bienzyme complex, indole produced by substrate cleavage at the alpha-site is channeled to the beta-site via a 25 A long tunnel. Within the beta-site, indole and l-Ser react with pyridoxal 5'-phosphate in a two-stage reaction to give l-Trp. In stage I, l-Ser forms an external aldimine, E(Aex1), which converts to the alpha-aminoacrylate aldimine, E(A-A). Formation of E(A-A) at the beta-site activates the alpha-site >30-fold. In stage II, indole reacts with E(A-A) to give l-Trp. The binding of alpha-site ligands (ASLs) exerts strong allosteric effects on the reaction of substrates at the beta-site: the distribution of intermediates formed in stage I is shifted in favor of E(A-A), and the binding of ASLs triggers a conformational change in the beta-site to a state with an increased affinity for l-Ser. Here, we compare the behavior of new ASLs as allosteric effectors of stage I with the behavior of the natural product, d-glyceraldehyde 3-phosphate. Rapid kinetics and kinetic isotope effects show these ASLs bind with affinities ranging from micro- to millimolar, and the rate-determining step for conversion of E(Aex1) to E(A-A) is increased by 8-10-fold. To derive a structure-based mechanism for stage I, X-ray structures of both the E(Aex1) and E(A-A) states complexed with the different ASLs were determined and compared with structures of the ASL complexes with the internal aldimine [Ngo, H., Harris, R., Kimmich, N., Casino, P., Niks, D., Blumenstein, L., Barends, T. R., Kulik, V., Weyand, M., Schlichting, I., and Dunn, M. F. (2007) Biochemistry 46, 7713-7727].  相似文献   

4.
The binding of substrates and inhibitors to wild-type Proteus vulgaris tryptophan indole-lyase and to wild type and Y71F Citrobacter freundii tyrosine phenol-lyase was investigated in the crystalline state by polarized absorption microspectrophotometry. Oxindolyl-lalanine binds to tryptophan indole-lyase crystals to accumulate predominantly a stable quinonoid intermediate absorbing at 502 nm with a dissociation constant of 35 microm, approximately 10-fold higher than that in solution. l-Trp or l-Ser react with tryptophan indole-lyase crystals to give, as in solution, a mixture of external aldimine and quinonoid intermediates and gem-diamine and external aldimine intermediates, respectively. Different from previous solution studies (Phillips, R. S., Sundararju, B., & Faleev, N. G. (2000) J. Am. Chem. Soc. 122, 1008-1114), the reaction of benzimidazole and l-Trp or l-Ser with tryptophan indole-lyase crystals does not result in the formation of an alpha-aminoacrylate intermediate, suggesting that the crystal lattice might prevent a ligand-induced conformational change associated with this catalytic step. Wild-type tyrosine phenol-lyase crystals bind l-Met and l-Phe to form mixtures of external aldimine and quinonoid intermediates as in solution. A stable quinonoid intermediate with lambda(max) at 502 nm is accumulated in the reaction of crystals of Y71F tyrosine phenol-lyase, an inactive mutant, with 3-F-l-Tyr with a dissociation constant of 1 mm, approximately 10-fold higher than that in solution. The stability exhibited by the quinonoid intermediates formed both by wild-type tryptophan indole-lyase and by wild type and Y71F tyrosine phenol-lyase crystals demonstrates that they are suitable for structural determination by x-ray crystallography, thus allowing the elucidation of a key species of pyridoxal 5'-phosphate-dependent enzyme catalysis.  相似文献   

5.
Substrate channeling in the tryptophan synthase bienzyme complex from Salmonella typhimurium is regulated by allosteric interactions triggered by binding of ligand to the alpha-site and covalent reaction at the beta-site. These interactions switch the enzyme between low-activity forms with open conformations and high-activity forms with closed conformations. Previously, allosteric interactions have been demonstrated between the alpha-site and the external aldimine, alpha-aminoacrylate, and quinonoid forms of the beta-site. Here we employ the chromophoric l-Trp analogue, trans-3-indole-3'-acrylate (IA), and noncleavable alpha-site ligands (ASLs) to probe the allosteric properties of the internal aldimine, E(Ain). The ASLs studied are alpha-d,l-glycerol phosphate (GP) and d-glyceraldehyde 3-phosphate (G3P), and examples of two new classes of high-affinity alpha-site ligands, N-(4'-trifluoromethoxybenzoyl)-2-aminoethyl phosphate (F6) and N-(4'-trifluoromethoxybenzenesulfonyl)-2-aminoethyl phosphate (F9), that were previously shown to bind to the alpha-site by optical spectroscopy and X-ray crystal structures [Ngo, H., Harris, R., Kimmich, N., Casino, P., Niks, D., Blumenstein, L., Barends, T. R., Kulik, V., Weyand, M., Schlichting, I., and Dunn, M. F. (2007) Synthesis and characterization of allosteric probes of substrate channeling in the tryptophan synthase bienzyme complex, Biochemistry 46, 7713-7727]. The binding of IA to the beta-site is stimulated by the binding of GP, G3P, F6, or F9 to the alpha-site. The binding of ASLs was found to increase the affinity of the beta-site of E(Ain) for IA by 4-5-fold, demonstrating for the first time that the beta-subunit of the E(Ain) species undergoes a switching between low- and high-affinity states in response to the binding of ASLs.  相似文献   

6.
Weber-Ban E  Hur O  Bagwell C  Banik U  Yang LH  Miles EW  Dunn MF 《Biochemistry》2001,40(12):3497-3511
The tryptophan synthase bienzyme complex is the most extensively documented example of substrate channeling in which the oligomeric unit has been described at near atomic resolution. Transfer of the common metabolite, indole, between the alpha- and the beta-sites occurs by diffusion along a 25-A-long interconnecting tunnel within each alphabeta-dimeric unit of the alpha(2)beta(2) oligomer. The control of metabolite transfer involves allosteric interactions that trigger the switching of alphabeta-dimeric units between open and closed conformations and between catalytic states of low and high activity. This allosteric signaling is triggered by covalent transformations at the beta-site and ligand binding to the alpha-site. The signals are transmitted between sites via a scaffolding of structural elements that includes a monovalent cation (MVC) binding site and salt bridging interactions of betaLys 167 with betaAsp 305 or alphaAsp 56. Through the combined strategies of site-directed mutations of these amino acid residues and cation substitutions at the MVC site, this work examines the interrelationship of the MVC site and the alternative salt bridges formed between Lys beta167 with Asp beta305 or Asp alpha56 to the regulation of channeling. These experiments show that both the binding of a MVC and the formation of the Lys beta167-Asp alpha56 salt bridge are important to the transmission of allosteric signals between the sites, whereas, the salt bridge between betaK167 and betaD305 appears to be only of minor significance to catalysis and allosteric regulation. The mechanistic implications of these findings both for substrate channeling and for catalysis are discussed.  相似文献   

7.
The bacterial tryptophan synthase bienzyme complexes (with subunit composition alpha 2 beta 2) catalyze the last two steps in the biosynthesis of L-tryptophan. For L-tryptophan synthesis, indole, the common metabolite, must be transferred by some mechanism from the alpha-catalytic site to the beta-catalytic site. The X-ray structure of the Salmonella typhimurium tryptophan synthase shows the catalytic sites of each alpha-beta subunit pair are connected by a 25-30 A long tunnel [Hyde, C. C., Ahmed, S. A., Padlan, E. A., Miles, E. W., & Davies, D. R. (1988) J. Biol. Chem. 263, 17857-17871]. Since the S. typhimurium and Escherichia coli enzymes have nearly identical sequences, the E. coli enzyme must have a similar tunnel. Herein, rapid kinetic studies in combination with chemical probes that signal the bond formation step between indole (or nucleophilic indole analogues) and the alpha-aminoacrylate Schiff base intermediate, E(A-A), bound to the beta-site are used to investigate tunnel function in the E. coli enzyme. If the tunnel is the physical conduit for the transfer of indole from the alpha-site to the beta-site, then ligands that block the tunnel should also inhibit the rate at which indole and indole analogues from external solution react with E(A-A). We have found that when D,L-alpha-glycerol 3-phosphate (GP) is bound to the alpha-site, the rate of reaction of indole and nucleophilic indole analogues with E(A-A) is strongly inhibited. These compounds appear to gain access to the beta-site via the alpha-site and the tunnel, and this access is blocked by the binding of GP to the alpha-site. However, when small nucleophiles such as hydroxylamine, hydrazine, or N-methylhydroxylamine are substituted for indole, the rate of quinonoid formation is only slightly affected by the binding of GP. Furthermore, the reactions of L-serine and L-tryptophan with alpha 2 beta 2 show only small rate effects due to the binding of GP. From these experiments, we draw the following conclusions: (1) L-Serine and L-tryptophan gain access to the beta-site of alpha 2 beta 2 directly from solution. (2) The small effects of GP on the rates of the L-serine and L-tryptophan reactions are due to GP-mediated allosteric interactions between the alpha- and beta-sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
W F Drewe  M F Dunn 《Biochemistry》1986,25(9):2494-2501
The pre-steady-state reaction of indole and L-serine with the alpha 2 beta 2 complex of Escherichia coli tryptophan synthase has been investigated under different premixing conditions with rapid-scanning stopped-flow (RSSF) UV-visible spectroscopy for the spectral range 300-550 nm. When alpha 2 beta 2 was mixed with indole and L-serine, the reaction of alpha 2 beta 2 was found to occur in three detectable relaxations (1/tau 1 greater than 1/tau 2 greater than 1/tau 3) with rate constants identical with the three relaxations seen in the partial reaction with L-serine [Drewe, W.F., Jr., & Dunn, M.F. (1985) Biochemistry 24, 3977-3987]. Kinetic isotope effects due to substitution of 2H for the alpha-1H of serine were found to be similar to the effects observed in the reaction with serine only. The observed spectral changes and isotope effects indicate that the aldimine of L-serine and PLP and the first quinoid derived from this external aldimine are transient species that accumulate during tau 1. Conversion of these intermediates to the alpha-aminoacrylate Schiff base during tau 2 and tau 3 limits the rate of formation of the second quinoidal species (lambda max 476 nm) generated via C-C bond formation between indole and the alpha-aminoacrylate intermediate. The pre-steady-state reaction of the alpha 2 beta 2-serine mixture with indole is comprised of four relaxations (1/tau 1* greater than 1/tau 2* greater than 1/tau 3* greater than 1/tau 4*).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
W F Drewe  S C Koerber  M F Dunn 《Biochimie》1989,71(4):509-519
The reactions of the alpha 2 beta 2 complex of Escherichia coli tryptophan synthase with D- and L-Trp and the presteady-state reaction of L-Ser and beta-mercaptoethanol under different premixing conditions have been investigated by rapid-scanning stopped-flow (RSSF) UV-visible spectroscopy. The reaction of alpha 2 beta 2 with L-Ser and beta-mercaptoethanol occurs in 3 detectable relaxations with rates similar to the 3 relaxations seen in the partial reaction with L-Ser and in the reaction with L-Ser and indole. The presteady-state phase of the reaction of beta-mercaptoethanol with the alpha-aminoacrylate intermediate is characterized by 2 relaxations. The RSSF spectra for this reaction show that the spectral changes that take place in these 2 phases are essentially identical. The L-Trp reaction is biphasic, and the spectral changes occurring in each phase of the reaction also are identical. The 2 new spectral bands formed (lambda max congruent to 420 nm and congruent to 476 nm) are assigned as the L-Trp external aldimine (Schiff's base) and L-Trp quinonoid intermediates, respectively. The reaction of D-Trp also is biphasic. Analysis of first and second derivatives of the RSSF spectral changes give evidence for the formation of spectral bands with lambda max of approximately 423 nm, approximately 450 nm, and approximately 478 nm. The positions and shapes of these bands suggest a D-Trp external aldimine structure (423 nm) and a quinonoidal species (450 and 478 nm). However, product studies do not support this latter assignment. The behavior of the D- and L-Trp reactions and the reaction of beta-mercaptoethanol with the alpha-aminoacrylate strongly indicate the pre-existence of 2 slowly equilibrating forms of the internal aldimine and of the alpha-aminoacrylate.  相似文献   

10.
E Woehl  M F Dunn 《Biochemistry》1999,38(22):7118-7130
The tryptophan synthase bienzyme complex is activated and regulated by the allosteric action of monovalent cations (MVCs). The kinetic dissection of the first stage (stage I) in the beta-reaction of tryptophan synthase, the reaction of L-serine with pyridoxal 5'-phosphate at the beta-site to give the alpha-aminoacrylate Schiff base intermediate, E(A-A), is here examined in the absence and presence of MVCs. This analysis reveals which of the individual steps are greatly affected in stage I and how the ground states and transition states are affected by MVCs. Kinetic studies in combination with a detailed relaxation kinetic analysis to determine the specific rate constants for the conversion of the L-Ser external aldimine, E(Aex1), to E(A-A) show that the primary kinetic isotope effect for proton abstraction from Calpha of the E(Aex1) species changes from 4.0 +/- 0.4 in the absence of MVCs to a value of 5.9 +/- 0.5 in the presence of Na+, indicating that the nature of the transition state for this C-H scission is significantly perturbed by the MVC effect. The E(A-A) species was found to exist in two conformations with different activities, the ratio of which is affected by the presence of MVCs. It is shown that changes in the rate constants of stage I are important in establishing the ratio of active to inactive conformations of the E(A-A) species. Consequently, the MVC effect alters the relative energies of both the transition states and the ground states for selected steps in stage I of the pathway. Hence, interactions at the MVC site give rise to a fine-tuning of the covalent bonding interactions between active site residues and the reacting substrate during the conformational cycle of the bienzyme complex.  相似文献   

11.
The alpha(2)beta(2) tryptophan synthase complex is a model enzyme for understanding allosteric regulation. We report the functional and regulatory properties of the betaS178P mutant. Ser-178 is located at the end of helix 6 of the beta subunit, belonging to the domain involved in intersubunit signaling. The carbonyl group of betaSer-178 is hydrogen bonded to Gly-181 of loop 6 of the alpha subunit only when alpha subunit ligands are bound. An analysis by molecular modeling of the structural effects caused by the betaS178P mutation suggests that the hydrogen bond involving alphaGly-181 is disrupted as a result of localized structural perturbations. The ratio of alpha to beta subunit concentrations was calculated to be 0.7, as for the wild type, indicating the maintenance of a tight alpha-beta complex. Both the activity of the alpha subunit and the inhibitory effect of the alpha subunit ligands indole-3-acetylglycine and d,l-alpha-glycerol-3-phosphate were found to be the same for the mutant and wild type enzyme, whereas the beta subunit activity of the mutant exhibited a 2-fold decrease. In striking contrast to that observed for the wild type, the allosteric effectors indole-3-acetylglycine and d,l-alpha-glycerol-3-phosphate do not affect the beta activity. Accordingly, the distribution of l-serine intermediates at the beta-site, dominated by the alpha-aminoacrylate, is only slightly influenced by alpha subunit ligands. Binding of sodium ions is weaker in the mutant than in the wild type and leads to a limited increase of the amount of the external aldimine intermediate, even at high pH, whereas binding of cesium ions exhibits the same affinity and effects as in the wild type, leading to an increase of the alpha-aminoacrylate tautomer absorbing at 450 nm. Crystals of the betaS178P mutant were grown, and their functional and regulatory properties were investigated by polarized absorption microspectrophotometry. These findings indicate that (i) the reciprocal activation of the alpha and beta activity in the alpha2beta2 complex with respect to the isolated subunits results from interactions that involve residues different from betaSer-178 and (ii) betaSer-178 is a critical residue in ligand-triggered signals between alpha and beta active sites.  相似文献   

12.
Phillips RS  Chen HY  Faleev NG 《Biochemistry》2006,45(31):9575-9583
Tyrosine phenol-lyase (TPL) from Citrobacter freundii is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the reversible hydrolytic cleavage of l-Tyr to give phenol and ammonium pyruvate. The proposed reaction mechanism for TPL involves formation of an external aldimine of the substrate, followed by deprotonation of the alpha-carbon to give a quinonoid intermediate. Elimination of phenol then has been proposed to give an alpha-aminoacrylate Schiff base, which releases iminopyruvate that ultimately undergoes hydrolysis to yield ammonium pyruvate. Previous stopped-flow kinetic experiments have provided direct spectroscopic evidence for the formation of the external aldimine and quinonoid intermediates in the reactions of substrates and inhibitors; however, the predicted alpha-aminoacrylate intermediate has not been previously observed. We have found that 4-hydroxypyridine, a non-nucleophilic analogue of phenol, selectively binds and stabilizes aminoacrylate intermediates in reactions of TPL with S-alkyl-l-cysteines, l-tyrosine, and 3-fluoro-l-tyrosine. In the presence of 4-hydroxypyridine, a new absorption band at 338 nm, assigned to the alpha-aminoacrylate, is observed with these substrates. Formation of the 338 nm peaks is concomitant with the decay of the quinonoid intermediates, with good isosbestic points at approximately 365 nm. The value of the rate constant for aminoacrylate formation is similar to k(cat), suggesting that leaving group elimination is at least partially rate limiting in TPL reactions. In the reaction of S-ethyl-l-cysteine in the presence of 4-hydroxypyridine, a subsequent slow reaction of the alpha-aminoacrylate is observed, which may be due to iminopyruvate formation. Both l-tyrosine and 3-fluoro-l-tyrosine exhibit kinetic isotope effects of approximately 2-3 on alpha-aminoacrylate formation when the alpha-(2)H-labeled substrates are used, consistent with the previously reported internal return of the alpha-proton to the phenol product. These results are the first direct spectroscopic observation of alpha-aminoacrylate intermediates in the reactions of TPL.  相似文献   

13.
D Ferrari  L H Yang  E W Miles  M F Dunn 《Biochemistry》2001,40(25):7421-7432
Substrate channeling in the tryptophan synthase bienzyme is regulated by allosteric interactions. Allosteric signals are transmitted via a scaffolding of structural elements that includes a monovalent cation-binding site and salt-bridging interactions between the side chains of betaAsp 305, betaArg 141, betaLys 167, and alphaAsp 56 that appear to modulate the interconversion between open and closed conformations. betaAsp 305 also interacts with the hydroxyl group of the substrate L-Ser in some structures. One possible functional role for betaAsp 305 is to ensure the allosteric transmission that triggers the switching of alphabeta-dimeric units between open and closed conformations of low and high activity. This work shows that substitution of betaAsp 305 with Ala (betaD305A) decreases the affinity of the beta-site for the substrate L-Ser, destabilizes the enzyme-bound alpha-aminoacrylate, E(A-A), and quinonoid species, E(Q), and changes the nucleophile specificity of the beta-reaction. The altered specificity provides a biosynthetic route for new L-amino acids derived from substrate analogues. betaD305A also shows an increased rate of formation of pyruvate upon reaction with L-Ser relative to the wild-type enzyme. The formation of pyruvate is strongly inhibited by the binding of benzimidazole to E(A-A). Upon reaction with L-Ser and in the presence of the alpha-site substrate analogue, alpha-glycerol phosphate, the Na(+) form of betaD305A undergoes inactivation via reaction of nascent alpha-aminoacrylate with bound PLP. This work establishes important roles for betaAsp 305 both in the conformational change between open and closed states that takes place at the beta-site during the formation of the E(A-A) and in substrate binding and recognition.  相似文献   

14.
The pyridoxal 5'-phosphate-dependent beta-subunit of the tryptophan synthase alpha(2)beta(2) complex catalyzes the condensation of L-serine with indole to form L-tryptophan. The first stage of the reaction is a beta-elimination that involves a very fast interconversion of the internal aldimine in a highly fluorescent L-serine external aldimine that decays, via the alpha-carbon proton removal and beta-hydroxyl group release, to the alpha-aminoacrylate Schiff base. This reaction is influenced by protons, monovalent cations, and alpha-subunit ligands that modulate the distribution between open and closed conformations. In order to identify the ionizable residues that might assist catalysis, we have investigated the pH dependence of the rate of the external aldimine decay by rapid scanning UV-visible absorption and single wavelength fluorescence stopped flow. In the pH range 6-9, the reaction was found to be biphasic with the first phase (rate constants k(1)) accounting for more than 70% of the signal change. In the absence of monovalent cations or in the presence of sodium and potassium ions, the pH dependence of k(1) exhibits a bell shaped profile characterized by a pK(a1) of about 6 and a pK(a2) of about 9, whereas in the presence of cesium ions, the pH dependence exhibits a saturation profile characterized by a single pK(a) of 9. The presence of the allosteric effector indole acetylglycine increases the rate of reaction without altering the pH profile and pK(a) values. By combining structural information for the internal aldimine, the external aldimine, and the alpha-aminoacrylate with kinetic data on the wild type enzyme and beta-active site mutants, we have tentatively assigned pK(a1) to betaAsp-305 and pK(a2) to betaLys-87. The loss of pK(a1) in the presence of cesium ions might be due to a shift to lower values, caused by the selective stabilization of a closed form of the beta-subunit.  相似文献   

15.
The cystine lyase (C-DES) of Synechocystis is a pyridoxal-5'-phosphate-dependent enzyme distantly related to the family of NifS-like proteins. The crystal structure of an N-terminal modified variant has recently been determined. Herein, the reactivity of this enzyme variant was investigated spectroscopically in solution and in the crystalline state to follow the course of the reaction and to determine the catalytic mechanism on a molecular level. Using the stopped-flow technique, the reaction with the preferred substrate cystine was found to follow biphasic kinetics leading to the formation of absorbing species at 338 and 470 nm, attributed to the external aldimine and the alpha-aminoacrylate; the reaction with cysteine also exhibited biphasic behavior but only the external aldimine accumulated. The same reaction intermediates were formed in crystals as seen by polarized absorption microspectrophotometry, thus indicating that C-DES is catalytically competent in the crystalline state. The three-dimensional structure of the catalytically inactive mutant C-DES(K223A) in the presence of cystine showed the formation of an external aldimine species, in which two alternate conformations of the substrate were observed. The combined results allow a catalytic mechanism to be proposed involving interactions between cystine and the active site residues Arg-360, Arg-369, and Trp-251*; these residues reorient during the beta-elimination reaction, leading to the formation of a hydrophobic pocket that stabilizes the enolimine tautomer of the aminoacrylate and the cysteine persulfide product.  相似文献   

16.
C H Tai  P Burkhard  D Gani  T Jenn  C Johnson  P F Cook 《Biochemistry》2001,40(25):7446-7452
A new crystal structure of the A-isozyme of O-acetylserine sulfhydrylase-A (OASS) with chloride bound to an allosteric site located at the dimer interface has recently been determined [Burkhard, P., Tai, C.-H., Jansonius, J. N., and Cook, P. F. (2000) J. Mol. Biol. 303, 279-286]. Data have been obtained from steady state and presteady-state kinetic studies and from UV-visible spectral studies to characterize the allosteric anion-binding site. Data obtained with chloride and sulfate as inhibitors indicate the following: (i) chloride and sulfate prevent the formation of the external aldimines with L-cysteine or L-serine; (ii) chloride and sulfate increase the external aldimine dissociation constants for O-acetyl-L-serine, L-methionine, and 5-oxo-L-norleucine; (iii) chloride and sulfate bind to the allosteric site in the internal aldimine and alpha-aminoacrylate external aldimine forms of OASS; (iv) sulfate also binds to the active site. Sulfide behaves in a manner identical to chloride and sulfate in preventing the formation of the L-serine external aldimine. The binding of chloride to the allosteric site is pH independent over the pH range 7-9, suggesting no ionizable enzyme side chains ionize over this pH range. Inhibition by sulfide is potent (K(d) is 25 microM at pH 8) suggesting that SH(-) is the physiologic inhibitory species.  相似文献   

17.
E Woehl  M F Dunn 《Biochemistry》1999,38(22):7131-7141
The alpha-subunit of the tryptophan synthase bienzyme complex catalyzes the formation of indole from the cleavage of 3-indolyl-D-glyceraldehyde 3'-phosphate, while the beta-subunit utilizes L-serine and the indole produced at the alpha-site to form tryptophan. The replacement reaction catalyzed by the beta-subunit requires pyridoxal 5'-phosphate (PLP) as a cofactor. The beta-reaction occurs in two stages: in stage I, the first substrate, L-Ser, reacts with the enzyme-bound PLP cofactor to form an equilibrating mixture of the L-Ser Schiff base, E(Aex1), and the alpha-aminoacrylate Schiff base intermediate, E(A-A); in stage II, this intermediate reacts with the second substrate, indole, to form tryptophan. Monovalent cations (MVCs) are effectors of these processes [Woehl, E., and Dunn, M. F. (1995) Biochemistry 34, 9466-9476]. Herein, detailed kinetic dissections of stage II are described in the absence and in the presence of MVCs. The analyses presented complement the results of the preceding paper [Woehl, E., and Dunn, M. F. (1999) Biochemistry 38, XXXX-XXXX], which examines stage I, and confirm that the chemical and conformational processes in stage I establish the presence of two slowly interconverting conformations of E(A-A) that exhibit different reactivities in stage II. The pattern of kinetic isotope effects on the overall activity of the beta-reaction shows an MVC-mediated change in rate-limiting steps. In the absence of MVCs, the reaction of E(A-A) with indole becomes the rate-limiting step. In the presence of Na+ or K+, the conversion of E(Aex1) to E(A-A) is rate limiting, whereas some third process not subject to an isotope effect becomes rate determining for the NH4+-activated enzyme. The combined results from the preceding paper and from this study define the MVC effects, both for the reaction catalyzed by the beta-subunit and for the allosteric communication between the alpha- and beta-sites. Partial reaction-coordinate free energy diagrams and simulation studies of MVC effects on the proposed mechanism of the beta-reaction are presented.  相似文献   

18.
Hur O  Niks D  Casino P  Dunn MF 《Biochemistry》2002,41(31):9991-10001
Reactions catalyzed by the beta-subunits of the tryptophan synthase alpha(2)beta(2) complex involve multiple covalent transformations facilitated by proton transfers between the coenzyme, the reacting substrates, and acid-base catalytic groups of the enzyme. However, the UV/Vis absorbance spectra of covalent intermediates formed between the pyridoxal 5'-phosphate coenzyme (PLP) and the reacting substrate are remarkably pH-independent. Furthermore, the alpha-aminoacrylate Schiff base intermediate, E(A-A), formed between L-Ser and enzyme-bound PLP has an unusual spectrum with lambda(max) = 350 nm and a shoulder extending to greater than 500 nm. Other PLP enzymes that form E(A-A) species exhibit intense bands with lambda(max) approximately 460-470 nm. To further investigate this unusual tryptophan synthase E(A-A) species, these studies examine the kinetics of H(+) release in the reaction of L-Ser with the enzyme using rapid kinetics and the H(+) indicator phenol red in solutions weakly buffered by substrate L-serine. This work establishes that the reaction of L-Ser with tryptophan synthase gives an H(+) release when the external aldimine of L-Ser, E(Aex(1)), is converted to E(A-A). This same H(+) release occurs in the reaction of L-Ser plus the indole analogue, aniline, in a step that is rate-determining for the appearance of E(Q)(Aniline). We propose that the kinetic and spectroscopic properties of the L-Ser reaction with tryptophan synthase reflect a mechanism wherein the kinetically detected proton release arises from conversion of an E(Aex(1)) species protonated at the Schiff base nitrogen to an E(A-A) species with a neutral Schiff base nitrogen. The mechanistic and conformational implications of this transformation are discussed.  相似文献   

19.
R S Phillips 《Biochemistry》1991,30(24):5927-5934
The effects of indole and analogues on the reaction of Escherichia coli tryptophan indole-lyase (tryptophanase) with amino acid substrates and quasisubstrates have been studied by rapid-scanning and single-wavelength stopped-flow spectrophotometry. Indole binds rapidly (within the dead time of the stopped-flow instrument) to both the external aldimine and quinonoid complexes with L-alanine, and the absorbance of the quinonoid intermediate decreases in a subsequent slow relaxation. Indoline binds preferentially to the external aldimine complex with L-alanine, while benzimidazole binds selectively to the quinonoid complex of L-alanine. Indole and indoline do not significantly affect the spectrum of the quinonoid intermediates formed in the reaction of the enzyme with S-alkyl-L-cysteines, but benzimidazole causes a rapid decrease in the quinonoid peak at 512 nm and the appearance of a new peak at 345 nm. Benzimidazole also causes a rapid decrease in the quinonoid peak at 505 nm formed in the reaction with L-tryptophan and the appearance of a new absorbance peak at 345 nm. Furthermore, addition of benzimidazole to solutions of enzyme, potassium pyruvate, and ammonium chloride results in the formation of a similar absorption peak at 340 nm. This complex reacts rapidly with indole to form a quinonoid intermediate very similar to that formed from L-tryptophan. This new intermediate is formed faster than catalytic turnover (kcat = 6.8 s-1) and may be an alpha-aminoacrylate intermediate bound as a gem-diamine.  相似文献   

20.
In an effort to understand the catalytic mechanism of the tryptophan synthase beta-subunit from Salmonella typhimurium, possible functional active site residues have been identified (on the basis of the 3-D crystal structure of the bienzyme complex) and targeted for analysis utilizing site-directed mutagenesis. The chromophoric properties of the pyridoxal 5'-phosphate cofactor provide a particularly convenient and sensitive spectral probe to directly investigate changes in catalytic events which occur upon modification of the beta-subunit. Substitution of Asp for Glu 109 in the beta-subunit was found to alter both the catalytic activity and the substrate specificity of the beta-reaction. Steady-state kinetic data reveal that the beta-reaction catalyzed by the beta E109D alpha 2 beta 2 mutant enzyme complex is reduced 27-fold compared to the wild-type enzyme. Rapid-scanning stopped-flow (RSSF) UV-visible spectroscopy shows that the mutation does not seriously affect the pre-steady-state reaction of the beta E109D mutant with L-serine to form the alpha-aminoacrylate intermediate, E(A-A). Binding of the alpha-subunit specific ligand, alpha-glycerol phosphate (GP) to the alpha 2 beta 2 complex exerts the same allosteric effects on the beta-subunit as observed with the wild-type enzyme. However, the pre-steady-state spectral changes for the reaction of indole with E(A-A) show that the formation of the L-tryptophan quinonoid, E(Q3), is drastically altered. Discrimination against E(Q3) formation is also observed for the binding of L-tryptophan to the mutant alpha 2 beta 2 complex in the reverse reaction. In contrast, substitution of Asp for Glu 109 increases the apparent affinity of the beta E109D alpha-aminoacrylate complex for the indole analogue indoline and results in the increased rate of synthesis of the amino acid product dihydroiso-L-tryptophan. Thus, the mutation affects the covalent bond forming addition reactions and the nucleophile specificity of the beta-reaction catalyzed by the bienzyme complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号