首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the temperature and salt dependence of the volume change (DeltaVb) associated with the binding of ethidium bromide and netropsin with poly(dA).poly(dT) and poly[d(A-T)].poly[d(A-T)]. The DeltaV(b) of binding of ethidium with poly(dA).poly(dT) was much more negative at temperatures approximately 70 degrees C than at 25 degrees C, whereas the difference is much smaller in the case of binding with poly[d(A-T)].poly[d(A-T)]. We also determined the volume change of DNA-drug interaction by comparing the volume change of melting of DNA duplex and DNA-drug complex. The DNA-drug complexes display helix-coil transition temperatures (Tm several degrees above those of the unbound polymers, e.g., the Tm of the netropsin complex with poly(dA)poly(dT) is 106 degrees C. The results for the binding of ethidium with poly[d(A-T)].poly[d(A-T)] were accurately described by scaled particle theory. However, this analysis did not yield results consistent with our data for ethidium binding with poly(dA).poly(dT). We hypothesize that heat-induced changes in conformation and hydration of this polymer are responsible for this behavior. The volumetric properties of poly(dA).poly(dT) become similar to those of poly[d(A-T)].poly[d(A-T)] at higher temperatures.  相似文献   

2.
L A Marky  R B Macgregor 《Biochemistry》1990,29(20):4805-4811
We report differences in the interaction of two structurally similar phenanthroline intercalators, ethidium and propidium, with poly(dA).poly(dT) and poly[d(A-T)] as a function of ionic strength based on titration microcalorimetry, fluorescence titration, and hydrostatic pressure measurements. Both ethidium and propidium bind more strongly to poly[d(A-T)].poly[d(A-T)] than to poly(dA).poly(dT). Ethidium intercalation into the latter polymer displays titrations with positive cooperativity; this is not found with propidium. The enthalpy of intercalation (delta H degrees) is exothermic for both dyes with poly[d(A-T)].poly[d(A-T)]; however, the value of this parameter is nearly zero in the case of poly(dA).poly(dT). The molar volume change (delta V degrees) accompanying dye intercalation is negative under all conditions for poly[d(A-T)].poly[d(A-T)] whereas it is positive for poly(dA).poly(dT). The changes observed in delta V degrees correlate well with the entropy changes derived from the titration and calorimetric data for this reaction. The results, interpreted in terms of the relative hydration of these two polymers, are consistent with a higher extent of hydration of poly(dA).poly(dT) relative to poly[d(A-T)].poly[d(A-T)].  相似文献   

3.
Pressure-jump study of the kinetics of ethidium bromide binding to DNA   总被引:4,自引:0,他引:4  
Pressure-jump chemical relaxation has been used to investigate the kinetics of ethidium bromide binding to the synthetic double-stranded polymers poly[d(G-C)] and poly[d(A-T)] in 0.1 M NaCl, 10 mM tris(hydroxymethyl)aminomethane hydrochloride, and 1 mM ethylenediaminetetraacetic acid, pH 7.2, at 24 degrees C. The progress of the reaction was followed by monitoring the fluorescence of the intercalated ethidium at wavelengths greater than 610 nm upon excitation at 545 nm. The concentration of DNA was varied from 1 to 45 microM and the ethidium bromide concentration from 0.5 to 25 microM. The data for both polymers were consistent with a single-step bimolecular association of ethidium bromide with a DNA binding site. The necessity of a proper definition of the ethidium bromide binding site is discussed: it is shown that an account of the statistically excluded binding phenomenon must be included in any adequate representation of the kinetic data. For poly[d(A-T)], the bimolecular association rate constant is k1 = 17 X 10(6) M-1 s-1, and the dissociation rate constant is k-1 = 10 s-1; in the case of poly[d(G-C)], k1 = 13 X 10(6) M-1 s-1, and k-1 = 30 s-1. From the analysis of the kinetic amplitudes, the molar volume change, delta V0, of the intercalation was calculated. In the case of poly[d(A-T)], delta V0 = -15 mL/mol, and for poly[d(G-C)], delta V0 = -9 mL/mol; that is, for both polymers, intercalation is favored as the pressure is increased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The pressure dependence of the helix–coil transition of poly(dA)∙poly(dT) and poly[d(A-T)]·poly[d(A-T)] in aqueous solutions of NaCl and CsCl at concentrations between 10 and 200 mM is reported and used to calculate the accompanying volume change. We also investigated the binding parameters and volume change of ethidium bromide binding with poly(dA)∙poly(dT) and poly[d(A-T)]·poly[d(A-T)] in aqueous solutions of these two salts. The volume change of helix–coil transition of poly(dA)∙poly(dT) in Cs+-containing solutions differs by less than 1 cm3 mol− 1 from the value measured when Na+ is the counter-ion. We propose that this insensitivity towards salt type arises if the counter-ions are essentially fully hydrated around DNA and the DNA conformation is not significantly altered by salt types. Circular dichroism spectroscopy showed that the previously observed large volumetric disparity for the helix–coil transition of poly[d(A-T)]·poly[d(A-T)] in solutions containing Na+ and Cs+ is likely result of a Cs+-induced conformation change that is specific for poly[d(A-T)]·poly[d(A-T)]. This cation-specific conformation difference is mostly absent for poly(dA)∙poly(dT) and EB bound poly[d(A-T)]·poly[d(A-T)].  相似文献   

5.
We report the volumetric and other thermodynamic properties of ethidium bromide (EB), propidium iodide (PI) and daunomycin (DAU) intercalating with poly(dA).poly(dT), poly[d(A-T)].poly[d(A-T)], and poly[d(G-C)].poly[d(G-C)], respectively, as well as minor groove binder Hoechst 33258 binding with poly[d(A-T)].poly[d(A-T)]. The data were obtained using fluorescence titration and hydrostatic pressure measurements. Our thermodynamic data are combined with enthalpies from literature reports to analyze the thermodynamic characteristics of the different interactions. The differences are interpreted based on three processes related to hydration: I. burial of non-polar hydrophobic solvent accessible surface, II. burial of polar surface and formation of solute-solute H-bonds, and III. disruption of "structural" hydration. Sequence dependent conformational changes may also be important when comparing ligand binding to different DNA sequences. We conclude that a combination of different thermodynamic parameters, especially volume change, is essential in order to understand the role of hydration in the energetics of DNA-ligand interactions.  相似文献   

6.
The interaction of several 3,6-diaminoacridines with DNAs of various base composition has been studied by steady-state and transient fluorescence measurements. The acridine dyes employed are of the following two classes: class I - proflavine, acriflavine and 10-benzyl proflavine; class II - acridine yellow, 10-methyl acridine yellow and benzoflavine. It is found that the fluorescence decay kinetics follows a single-exponential decay law for free dye and the poly[d(A-T)]-dye complex, while that of the dye bound to DNA obeys a two-exponential decay law. The long lifetime (tau 1) for each complex is almost the same as the lifetime for the poly[d(A-T)]-dye complex, and the amplitude alpha 1 decreases with increasing GC content of DNA. The fluorescence quantum yields (phi F) of dye upon binding to DNA decrease with increasing GC content; the phi F values for class I are nearly zero when bound to poly(dG) X poly(dC), but those for class II are not zero. This is in harmony with the finding that GMP almost completely quenches the fluorescence for class I, whereas a weak fluorescence arises from the GMP-dye complex for class II. The fluorescence spectra of the DNA-dye complexes gradually shift toward longer wavelengths with increasing GC content. In this connection, the fluorescence decay parameters show a dependence on the emission wavelength; alpha 1 decreases with an increase in the emission wavelength. In view of these results, it is proposed that the decay behavior of the DNA-dye complexes has its origin in the heterogeneity of the emitting sites; the long lifetime tau 1 results from the dye bound to AT-AT sites, while the short lifetime tau 2 is attributable to the dye bound in the vicinity of GC pairs. Since GC pairs almost completely quench the fluorescence for class I, partly intercalated or externally bound dye molecules may play an important role in the component tau 2.  相似文献   

7.
The polarized fluorescence of the ethidium bromide (EB)-poly(rA-rU) complex has been studied by pulse fluorometry. As expected for a polynucleotide snowing one single kind of intercalation site, the decay of the whole emission is a single exponential (time constant 27 ns). The anisotropy decay is analysed as follows: (1) A brownian contribution having two correlation times, one of which characterizes local motions and the other a macromolecular motion. (2) A contribution due to transfers between EB molecules fixed to the same polynucleotide molecule, is analysed by a method analogous to the method used in previous work on EB-DNA complexes. That method consists in choosing a molecular model of the complex depending on geometrical parameters, and in simulating the energy migration on that model with a Monte Carlo calculation. Poly(rA-rU) is assumed here to adopt the structure A of RNA. Intercalated EB molecules modify the anale between two consecutive base pairs by δ. The angular position of the EB transition moment is defined by an angle φ. One finds that the angle φ is situated between 0° and 30°, which corresponds to a whole intercalation of the chroniophore as opposed to the semi-intercalation which has been proposed for certain dyes. The angle δ is negative; therefore there is an unwinding of the polyribonucleotide helix. Its absolute value is about 38°, sensibly greater than The value previously found for EB-DNA complexes.  相似文献   

8.
Binding of 5,10,15,20-tetrakis (N-methylpyridinium-4-yl)porphyrin (H2TMPyP4+) and its zinc complex (ZnTMPyP4+) to DNA is demonstrated by their coelectrophoresis and by absorption and fluorescence spectroscopic methods. Topoisomerisation of pBR322 DNA shows that H2TMPyP4+ unwinds DNA as efficiently as ethidium bromide showing that it intercalates at many sites. ZnTMPyP4+ may cause limited unwinding. Marked changes in the fluorescence spectra of the porphyrins are found in the presence of DNA. The fluorescence intensity of either H2TMPyP4+ or ZnTMPyP4+ is enhanced in the presence of poly (d(A-T)), whereas in the presence of poly (d(G-C] the fluorescence intensity of ZnTMPyP4+ is only slightly affected and that of H2TMPyP4+ markedly reduced. Both the porphyrins photosensitize the cleavage of DNA in aerated solution upon visible light irradiation.  相似文献   

9.
The binding mode of norfloxacin, a quinolone antibacterial agent, in the synthetic polynucleotides poly[d(G-C)2], poly[d(I-C)2] and poly[d(A-T)2] was studied using polarized light spectroscopy, fluorescence spectroscopy and melting profiles. The absorption, circular and linear dichroism properties of norfloxacin are essentially the same for all the complexes, and the angle of electric transition dipole moment I and II of norfloxacin relative to the DNA helix axis is measured as 68-75 degrees for all complexes. These similarities indicate that the binding mode of norfloxacin is similar for all the polynucleotides. The decrease in the linear dichroism (LD) magnitude at 260 nm upon binding norfloxacin, which is strongest for the norfloxacin-poly[d(G-C)2] complex, and the identical melting temperature of poly[d(A-T)2] and poly[d(I-C)2] in the presence and absence of norfloxacin rule out the possibility of classic intercalation and minor groove binding. However, the characteristics of the fluorescence emission spectra of norfloxacin bound to poly[d(A-T)2] and to poly[d(I-C)2] are similar but are different to that of norfloxacin bound to poly[d(G-C)2]. As the amine group of the guanine base protrudes to the minor groove, this result strongly suggests that norfloxacin binds in the minor groove of B-form DNA in a nonclassic manner.  相似文献   

10.
R S Johnson 《Biochemistry》1991,30(1):198-206
A derivative of RNA polymerase containing approximately 2 pyrene equiv per enzyme molecule has been used to study the interaction of RNA polymerase with poly[d(A-T)].poly[d(A-T)] and poly[d-(G-C)].poly[d(G-C)]. As monitored by fluorescence spectroscopy, pyrenyl RNA polymerase displays a unique set of conformational changes with each synthetic polynucleotide as a function of temperature. An increase in the fluorescence intensity was observed for both polynucleotides at 5 degrees C. A decrease was observed in the case of poly[d(A-T)].poly[d(A-T)] at 25 and 37 degrees C, whereas no discernible perturbation was observed in the case of poly[d(G-C)].poly[d(G-C)]. Different salt dependencies were observed for the interaction of pyrenyl RNA polymerase with these polynucleotides at 5 and 25 degrees C. Further characterization of these interactions as well as correlation of the observed fluorescence changes to the corresponding open and closed complexes was carried out with heparin. The interaction between pyrenyl RNA polymerase and poly[d-(A-T)].poly[d(A-T)] at 25 degrees C was quantified by using two different methods.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Comparative 1H NMR and optical studies of the interaction between poly(dA-dT), ethidium bromide (Et) and ethidium dimer (Et2) in 0.7 M NaCl are reported as a function of the temperature. Denaturation of the complexes followed at both polynucleotide and drug levels leads to a biphasic melting process for poly(dA-dT) complexed with ethidium dimer (t1/2 = 75 degrees C; 93 degrees C) but a monophasic one in poly(dA-dT): ethidium bromide complex (t1/2 = 74 degrees C). In both cases drug signals exhibit monophasic thermal dependence (Et = 81 degrees C; Et2 = 95 degrees C). Evidence is presented showing that the ethidium dimer bisintercalates into poly(dA-dT) in high salt, based on the observation that i) dimer and monomer ring protons exhibit similar upfield shifts upon DNA binding, ii) upfield shifts of DNA sugar protons are twice as large with the dimer than with ethidium bromide. Comparison between native DNA fraction and bound drug fraction indicates that ethidium covers, n = 2.5-3 base pairs. The dimer bisintercalates and covers, n = 5.7 base pairs when the helix fraction is high but as the number of available sites decreases the binding mode changes and the drug monointercalates (n = 2.9).  相似文献   

12.
Several synthetic DNAs were prepared containing the unusual bases 7-deazaadenine (c7A) and 7-deazaguanine (c7G). As judged from changes in melting temperatures these modified DNAs bound ethidium to a similar extent as the parent polymers. However, duplexes such as poly [d(Tc7G)].poly[d(CA)] and poly[d-(TC)].poly[d(c7GA]) gave no enhancement of ethidium fluorescence in a standard ethidium fluorescence assay. Fluorescence spectra in the range 400-650 nm showed that ethidium bound to poly[d(TC)].poly[d(Gc7A)] gave 70% of the fluorescence of the parent polymer poly[d(TC)].poly[d(GA)], whereas the fluorescence of poly[d(TC)].poly[d(c7GA)] was essentially 0%. Even the intrinsic fluorescence of ethidium in solution was quenched in the presence of poly[d(TC)].poly[d(c7GA)]. Binding constants were estimated from Scatchard analysis and were 4.8, 3.4, and 2.0 x 10(6) M-1 for poly[d(TC)].poly[d(GA)], poly[d(TC)].poly[d(Gc7A)], and poly[d(TC)].poly[d(c7GA)], respectively. This reduction in binding constant cannot account for the loss of fluorescence. The UV spectrum of ethidium was measured in the presence of these DNAs, and some significant differences were noted. Presumably the presence of 7-deazaguanine alters the electronic structure of bound ethidium so that it can no longer fluoresce.  相似文献   

13.
14.
Thermal denaturation of four oligonucleotides, viz. 3'-d(AT)5pO(CH2)6Opd(AT)5-3'(par(AT], 3'-d(AT)5pO(CH2)6Opd(AT)5-5'(anti(AT],3'-d(A)10pO(CH2) 6Op(T)10-3'(par(A-T], and 3'-d(A)10pO(CH2)6Opd(T)10-5' (anti(A-T], was studied in 0.01 M phosphate buffer, pH 7, in the presence of 0.1, 0.25, 0.5 and 1.0 M NaCl. All the oligomers were found to exist at a lower temperature (0 to 20 degrees C) as complexes composed either of two oligomer molecules (a canonical duplex) or of more oligomer molecules whereas, at a higher temperature (30 to 70 degrees C), they formed hairpins with a parallel (par(AT) and par(A-T] or antiparallel (anti(AT) and anti(A-T) orientation of the chains. Melting curves (A260(T] were used to calculate thermodynamic parameters for the formation of hairpins and "low-temperature" duplexes. Experiments on ethidium bromide binding to the oligonucleotides have shown that the oligomer anti(A-T) exists, at a low ionic strength, as a four stranded complex ("quadruplex") contains two antiparallel helices, d(A).d(T), which have a parallel orientation and are bound to one another owing to the formation of additional hydrogen bonds between nucleic acid bases. The possible biological function of quadruplexes is discussed.  相似文献   

15.
We examined the binding geometry of Co-meso-tetrakis (N-methyl pyridinium-4-yl)porphyrin, Co-meso-tetrakis (N-n-butyl pyridinium-4-yl)porphyrin and their metal-free ligands to poly[d(A-T)(2)] and poly[d(G-C)(2)] by optical spectroscopic methods including absorption, circular and linear dichroism spectroscopy, and fluorescence energy transfer technique. Signs of an induced CD spectrum in the Soret band depend only on the nature of the DNA sequence; all porphyrins exhibit negative CD when bound to poly[d(G-C)(2)] and positive when bound to poly[d(A-T)(2)]. Close analysis of the linear dichroism result reveals that all porphyrins exhibit outside binding when complexed with poly[d(A-T)(2)], regardless of the existence of a central metal and side chain. However, in the case of poly[d(G-C)(2)], we observed intercalative binding mode for two nonmetalloporphyrins and an outside binding mode for metalloporphyrins. The nature of the outside binding modes of the porphyrins, when complexed with poly[d(A-T)(2)] and poly[d(G-C)(2)], are quite different. We also demonstrate that an energy transfer from the excited nucleo-bases to porphyrins can occur for metalloporphyrins.  相似文献   

16.
It has been shown in a preceding work that the fluorescence anisotropy decay of ethidium bromide-DNA complex is accelerated by energy migration between dyes bound to the same DNA molecule. In the present work, this result is confirmed. A quantitative analysis has been performed in the following way. The spectroscopic term of the transfer rate constant has been accurately reevaluated by quantum yield and spectral measurements. One assumes that the dye intercalates between two adjacent base pairs and that its distribution is random along the DNA molecule. One introduces the deformation angle δ of the DNA helix induced by the ethidium bromide intercalation. For several values of δ, the energy migration contribution to the anisotropy decay is computed by a Monte Carlo method. In multiplying these computed functions by the measured brownian anisotropy, one obtains the anisotropy decay curve. Comparison with the experimental data leads to the conclusion that the ethidium bromide molecule unwinds the DNA helix by an angle δ = ?16°. This result is m agreement with the work of other authors. We think that the method used here may provide accurate information on the spatial distribution of an array of chromophores bound to a rigid structure.  相似文献   

17.
The requirements of cofactor DNA for DNA-dependent ATPases B and C3 were analyzed in detail. ATPase B and C3 required the presence of a polynucleotide for their activities. Among the DNAs tested, ATPase B showed a preference for poly(dT) as its cofactor. The other deoxyhomopolymers, except poly(dG) and heat-denatured DNA also were effective. The alternating polydeoxyribonucleotide, poly[d(A-T)] had an efficiency 23% that of heat-denatured DNA. Unlike ATPase B, ATPase C3 showed almost no activity with deoxyhomopolymers. The most effective cofactor for ATPase C3 so far tested is poly[d(A-T)]. Relatively high activity was obtained with heat-denatured DNA. The high activity of ATPase B with poly(dT) was reduced by the addition of poly(dA). The addition of noncomplementary homopolymers did not affect enzyme activity. ATPase C3 activity in the presence of 10 microM poly(dT) increased gradually with concentrations of poly(dA) up to 20 microM, after which it decreased. Almost no increase in activity was observed when noncomplementary homopolymers were added. The relatively high activity of ATPase C3 with heat-denatured DNA was suggested by its high sensitivity to ethidium bromide to be due to the double-stranded region in the heat-denatured DNA formed by self-annealing.  相似文献   

18.
By using the fluorescence enhancement of ethidium bromide bound to nuclei acid, a very rapid, simple and sensitive assay of DNA in the green alga Chlamydomonas has been devised. Total fluorescence (DNA + RNA) was determined by complex formation with ethidium bromide in a cell lysate made by mixing cell samples with lauroyl sarcosinate, EDTA and NaOH and incubating the mixture for 5 min at room temperature followed by neutralization. For determination of DNA the RNA was digested by incubating the cell sample in te alkaline lysis solution for 45 min at 60 degrees C followed by neutralization, and complex formation with ethidium bromide. Quenching of the fluorescence due to cellular pigments was corrected for using an internal DNA standard.  相似文献   

19.
H Takashima  M Nakanishi  M Tsuboi 《Biochemistry》1985,24(18):4823-4825
The kinetics of the hydrogen-deuterium exchange reactions of poly(dA).poly(rU) and poly(rA).poly(dT) has been examined, at pH 7.0 and at various temperatures in the 15-35 degrees C range, by stopped-flow ultraviolet spectrophotometry. For comparison, the deuteration kinetics of poly[d(A-T)].poly[d(A-T)] and poly(rA).poly(rU) has been reexamined. At 20 degrees C, the imino deuteration (NH----ND) rates of the two hybrid duplexes were found to be 1.5 and 1.8 s-1, respectively. These are nearly equal to the imino deuteration rates of poly[d(A-T)].poly[d(A-T)] (1.1 s-1) and poly(rA).poly(rU) (1.5 s-1) but appreciably higher than that of poly(dA).poly(dT) (0.35 s-1). It has been suggested that a DNA.RNA hybrid, an RNA duplex, and the AT-alternating DNA duplex have in general higher base-pair-opening reaction rates than the ordinary DNA duplex. The amino deuteration (NH2----ND2) rates, on the other hand, have been found to be 0.25, 0.28, and 0.33 s-1, respectively, for poly(dA).poly(rU), poly(rA).poly(dT), and poly[d(A-T)].poly[d(A-T)], at 20 degrees C. These are appreciably higher than that for poly(rA).poly(rU) (0.10 s-1). In general, the equilibrium constants (K) of the base-pair opening are considered to be greatest for the DNA.RNA hybrid duplex (0.05 at 20 degrees C), second greatest for the RNA duplex (0.02 at 20 degrees C), and smallest for the DNA duplex (0.005 at 20 degrees C), although the AT-alternating DNA duplex has an exceptionally great K (0.07 at 20 degrees C). From the temperature effect on the K value, the enthalpy of the base-pair opening was estimated to be 3.0 kcal/mol for the DNA.RNA hybrid duplex.  相似文献   

20.
The fluorescence yield and lifetime of ethidium bromide complexes with 1,4-alpha-glucan branching enzyme and its free nucleic acid component 2.5S RNA were measured. Both fluorescence parameters showed a 10-fold increase in comparison with those characteristics for the free dye. This increase allows to suggest the existence of double-stranded regions in 2.5S RNA both in the free as well as in the protein bound state. The coefficients of fluorescence polarization were also determined for ethidium bromide complexed with free and protein bound 2.5S RNA. They proved to be 13 and 18% respectively. No concentration depolarization was observed in both types of ethidium bromide and ethidium bromide--enzyme--RNA complexes. This proves that the double-stranded regions are rather short and that two ethidium bromide molecules can't be bound to each of them. The binding isotherms were measured for ethidium bromide absorbed on 2.5S RNA and on the holoenzyme. Their parameters napp and rmax are identical in the cases of free and protein bound 2,5S RNA (rmax = 0.046 +/- 0.001). However the binding constants of ethidium bromide complexes with free and protein bound 2.5S RNA differ significantly (Kapp = 2.2 X 10(6) M-1 for free 2.5S RNA and Kapp = 1.6 X 10(6) M-1 for the holoenzyme). The quantity of nucleotides involved in the two double-stranded regions accessible for ethidium binding is estimated to be about 28%. Increasing of Mg2+ ion concentration up to 10(-3) results in a decrease of ethidium bromide binding with double stranded regions. It may be due to a more compact tertiary structure of 2.5S RNA in the presence of Mg2+ in the free as well as in protein bound state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号