首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The structures of functional peptides corresponding to the predicted channel-lining M2 segment of the nicotinic acetylcholine (AChR) were determined using solution NMR experiments on micelle samples, and solid-state NMR experiments on bilayer samples. The AChR M2 peptide forms a straight transmembrane α-helix, with no kinks. M2 inserts in the lipid bilayer at an angle of 12° relative to the bilayer normal, with a rotation about the helix long axis such that the polar residues face the N-terminus of the peptide, which is assigned to be intracellular. A molecular model of the AChR channel pore, constructed from the solid-state NMR 3-D structure of the AChR M2 helix in the membrane assuming a pentameric organization, results in a funnel-like architecture for the channel with the wide opening on the N-terminal intracellular side. A central narrow pore has a diameter ranging from about 3.0 Å at its narrowest, to 8.6 Å at its widest. Nonpolar residues are predominantly on the exterior of the bundle, while polar residues line the pore. This arrangement is in fair agreement with evidence collected from permeation, mutagenesis, affinity labeling and cysteine accessibility measurements. A pentameric M2 helical bundle may, therefore, represent the structural blueprint for the inner bundle that lines the channel of the nicotinic AChR.  相似文献   

2.
The structures of functional peptides corresponding to the predicted channel-lining M2 segment of the nicotinic acetylcholine (AChR) were determined using solution NMR experiments on micelle samples, and solid-state NMR experiments on bilayer samples. The AChR M2 peptide forms a straight transmembrane alpha-helix, with no kinks. M2 inserts in the lipid bilayer at an angle of 12 degrees relative to the bilayer normal, with a rotation about the helix long axis such that the polar residues face the N-terminus of the peptide, which is assigned to be intracellular. A molecular model of the AChR channel pore, constructed from the solid-state NMR 3-D structure of the AChR M2 helix in the membrane assuming a pentameric organization, results in a funnel-like architecture for the channel with the wide opening on the N-terminal intracellular side. A central narrow pore has a diameter ranging from about 3.0 A at its narrowest, to 8.6 A at its widest. Nonpolar residues are predominantly on the exterior of the bundle, while polar residues line the pore. This arrangement is in fair agreement with evidence collected from permeation, mutagenesis, affinity labeling and cysteine accessibility measurements. A pentameric M2 helical bundle may, therefore, represent the structural blueprint for the inner bundle that lines the channel of the nicotinic AChR.  相似文献   

3.
An improved synthetic procedure for pentabenzylcyclopentadiene Bz5C5H was developed. Six new organomolybdenum and organotungsten halides η5-Bz5C5M(CO)3X(M = Mo, W; X = Cl, Br, I) were syntesized through the reaction of η5-Bz5C5M(CO)3Li (derived from Bz5C5H, n-BuLi and M(CO)6) with PCl3, PBr3 or I2 and characterized by elemental analysis, IR and 1H NMR spectroscopy. The structure of η5-Bz5C5Mo(CO)3I was determined by single-crystal X-ray diffraction techniques. It crystallized in the monoclinic space groupp P2/c with cell parameters a = 13.294(4), B = 15.147(4), C = 19.027(3) Å, β = 108.32(2)°, V = 3637(2) Å3, Z = 4 and Dx = 1.50 g cm−3. The final R value was 0.035 for 4564 observed reflections.  相似文献   

4.
M Criado  M Koenen  B Sakmann 《FEBS letters》1990,270(1-2):95-99
The mouse muscle cell line BC3H-1 expresses an acetylcholine receptor (AChR) composed of -,β-, and δ-subunits [1]. The functional characteristics of this AChR are comparable to the non-synaptic AChR subtype in mouse muscle [2,3]. To investigate the role of the ε-subunit, which is believed to replace the γ-subunit in forming the adult AChR subtype [4], BC3H-1 cells were stably transfected with cDNA encoding the rat muscle AChR ε-subunit. Expression of this cDNA was under the control of a heat shock promoter, and the plasmid carried the neomycin resistance gene for selection. Several clones were isolated that had integrated the plasmid DNA in a stable form and produced ε-subunit specific RNA after heat induction. Single-channel current recording from cells which contained abundant ε-subunit mRNA identified a novel AChR channel having a larger conductance than the native AChR in these cells. These results suggest that the rat muscle ε-subunit may assemble with mouse muscle -, β- and δ-subunits to form a mouse-rat hybrid AChR with properties similar to that of end-plate channels in the mature mammalian neuromuscular synapse. The novel AChR channel appears in the surface membrane within a few hours following the rise in ε-subunit mRNA. Thus, the notion that replacement of the γ-subunit by the ε-subunit during development is the result of the postnatal rise in the level of ε-subunit specific mRNA is further supported.  相似文献   

5.
The properties of the channel of the purified acetylcholine receptor (AChR) were investigated after reconstitution in planar lipid bilayers. The time course of the agonist-induced conductance exhibits a transient peak that relaxes to a steady state value. The macroscopic steady state membrane conductance increases with agonist concentration, reaching saturation at 10(-5) M for carbamylcholine (CCh). The agonist-induced membrane conductance was inhibited by d-tubocurarine (50% inhibition, IC50, at approximately 10(-6) M) and hexamethonium (IC50 approximately 10(-5) M). The single channel conductance, gamma, is ohmic and independent of the agonist. At 0.3 M monovalent salt concentrations, gamma = 28 pS for Na+, 30 pS for Rb+, 38 pS for Cs+, and 50 pS for NH+4. The distribution of channel open times was fit by a sum of two exponentials, reflecting the existence of two distinct open states. tau o1 and tau o2, the fast and slow components of the distribution of open times, are independent of the agonist concentration: for CCh this was verified in the range of 10(-6) M less than C less than 10(-3)M. tau 01 and tau o2 are approximately three times longer for suberyldicholine ( SubCh ) than for CCh. tau o1 and tau o2 are moderately voltage dependent, increasing as the applied voltage in the compartment containing agonist is made more positive with respect to the other. At desensitizing concentrations of agonist, the AChR channel openings occurred in a characteristic pattern of sudden paroxysms of channel activity followed by quiescent periods. A local anesthetic derivative of lidocaine ( QX -222) reduced both tau o1 and tau o2. This effect was dependent on both the concentration of QX -222 and the applied voltage. Thus, the AChR purified from Torpedo electric organ and reconstituted in planar lipid bilayers exhibits ion conduction and kinetic and pharmacological properties similar to AChR in intact muscle postsynaptic membranes.  相似文献   

6.
The primary amphipathic peptide Ac-Met-Gly-Leu-Gly-Leu-Trp-Leu-Leu-Val-Leu10-Ala-Ala-Ala-Leu-Gln-Gly-Ala-Lys-Lys-Lys20-Arg-Lys-Val-NH-CH2-CH2-SH called SPM was able to induce formation of ion channels into planar lipid bilayers with main conductance values of 75 and 950 pS in 1 M KCl. The 75 pS value can be attributed to an aggregate composed of five monomers since the corresponding five-unit bundle (5-SPM) also presented a 70 pS channels under the same conditions. The upper 950 pS level would be generated by a hexameric aggregate. Ion channels induced by both SPM and its pentameric bundle are slightly cation selective but not voltage-dependent. The structural studies showed that the SPM and 5-SPM possess mainly an alpha-helical structure (approximately 40%) and are strongly embedded in the bilayer. This behaviour and the strong hydrophobic interactions occurring between helices in the bundle induce a strong stabilization of 5-SPM in the bilayer and would be responsible for the stepwise current fluctuations observed during the incorporation of 5-SPM into the membrane.  相似文献   

7.
Metathesis of [(η33−C10H16)Ru(Cl) (μ−Cl)]2 (1) with [R3P) (Cl)M(μ-Cl)]2 (M = Pd, Pt), [Me2NCH2C6H4Pd(μ-Cl)]2 and [(OC)2Rh(μ-Cl)]2 affords the heterobimetallic chloro bridged complexes (η33-C10H16) (Cl)Ru(μ-Cl)2M(PR3)(Cl) (M = Pd, Pt), (η33-C10H16) (Cl)Ru(μ-Cl)2PdC6H4CH2NMe2 and (η33-C10H16) (Cl)Ru(μ-Cl)2Rh(CO)2, respectively. Complex 1 reacts with [Cp*M(Cl) (μ-Cl)]2 (M = Rh, Ir), [p-cymene Ru(Cl) (μ-Cl]2 and [(Cy3P)Cu(μ-Cl)]2 to give an equilibrium of the heterobimetallic complexes and of educts. The structures of (η33-C10H16)Ru(μ-Cl)2Pd(PR3) (Cl) (R = Et, Bu) and of one diastereoisomer of (η33-C10H16)Ru(μ-Cl)2IrCp*(Cl) were determined by X-ray diffraction.  相似文献   

8.
Vpu, an 81-residue membrane protein encoded by the genome of HIV-1, is involved in CD4 degradation and facilitates virion budding from infected cells. The latter activity requires an intact transmembrane (TM) domain; however, the mechanism remains unclear. Vpu forms ion channels, an activity linked to the TM domain and envisioned to arise by oligomerization. The precise number of Vpu monomers that structure the channel is not yet known. To address this issue, we have synthesized tetrameric and pentameric proteins consisting of a carrier template to which four or five peptides corresponding to the TM domain of Vpu are attached. Ketoxime-forming chemoselective ligation efficiently ligated four and five copies, respectively, of the linear transmembrane peptide that was solubilized by the addition of a cleavable polyethylene glycol-polyamide auxiliary to a template. Purified tetrameric and pentameric proteins, denoted as T(4)Vpu and T(5)Vpu, exhibit the predicted mass as determined by MS analysis and fold with a high helical content as evidenced by CD. Both T(4)Vpu and T(5)Vpu, after reconstitution in lipid bilayers, form discrete ion channels of distinct conductance and high propensity to be open. The most frequent openings have a single channel conductance of 42 +/- 5 pS for T(4)Vpu and 76 +/- 5 pS for T(5)Vpu in 0.5m KCl. These findings validate the notion that the channels formed by Vpu result from the self-assembly of monomers. We conclude that a five-helix bundle of the TM of Vpu may approximate the structural motif underlying the oligomeric state of the conductive channel.  相似文献   

9.
The reaction between the linear trinuclear complex [Pt{Fe(CO)3(NO)}2(PhCN)2] and Ph2(2-C5H4N)PSe led to the isolation and characterization of the 46-electron cluster [(CO)3Fe(μ3-Se){Pt(CO)P(2-C5H4N)Ph2}2] (1), whose structure has been determined by X-ray diffraction methods. The cluster typology, which consists of an open triangle Pt---Fe---Pt capped by a μ3-Se atom, is rather rare. The chemical bonding in 1 and in similar systems has been analyzed through density functional theory (DFT) and qualitative MO approaches. A strict analogy with the well understood L2M(μ-acetylene)ML2 systems is invoked by considering 1 as formed by the (CO)3FeSe tetrahedral unit stabilized by sidewise interactions of the triple bond with two d10-L2M fragments. Otherwise, the 18-electron (CO)3FeSe monomer is unstable as an isolate molecule. This is confirmed by our DFT calculations that indicate how the well characterized dimer (CO)3Fe(μ-Se2)Fe(CO)3 lies as much as, approximately, 58 kcal mol−1 deeper in energy. Finally, by considering an analogy with [L2M(μ-dichalcogen)ML2]0, +2 redox systems (M=Pd, Pt), reduction of 1 to a dianion has been hypothesized and the structure of the latter has been tentatively explored by DFT calculations.  相似文献   

10.
The acetylcholine receptor (AChR) channel is a pentameric protein in which every subunit contributes to the conducting parts of the pore. Recent studies of rat nicotinic AChR channels mutated in the alpha-subunit revealed that a threonine residue (alpha T264) in the transmembrane segment M2 forms part of the narrow region of the channel. We have mutated the residues at homologous positions in the beta-, gamma-, and delta-subunits and measured the resulting change in channel conductance. For all subunits the conductance is inversely related to the volume of the amino acid residue, suggesting that they form part of the channel narrow region. Exchanges of residues between subunits do not alter the conductance, suggesting a ring-like structure formed by homologous amino acids. To investigate the relative contribution of amino acid residues at these positions in determining the channel conductance, receptors carrying the same amino acid in each subunit in the narrow region were constructed. They form functional channels in which the conductance is inversely related to the volume of the amino acids in the narrow region. Channels in which the narrow region is formed by four serines and one valine have the same conductance if the valine is located in the alpha-, beta-, or gamma-subunits, but it is smaller if the valine is located in the delta-subunit. The results suggest a structural asymmetry of the AChR channel in its narrow region formed by the hydroxylated amino acids of alpha-, gamma- and delta-subunits, where the delta-subunit serine is a main determinant of the channel conductance.  相似文献   

11.
The M2delta peptide self-assembles to form a pentameric bundle of transmembrane alpha-helices that is a model of the pore-lining region of the nicotinic acetylcholine receptor. Long (>15 ns) molecular dynamics simulations of a model of the M2delta(5) bundle in a POPC bilayer have been used to explore the conformational dynamics of the channel assembly. On the timescale of the simulation, the bundle remains relatively stable, with the polar pore-lining side chains remaining exposed to the lumen of the channel. Fluctuations at the helix termini, and in the helix curvature, result in closing/opening transitions at both mouths of the channel, on a timescale of approximately 10 ns. On average, water within the pore lumen diffuses approximately 4x more slowly than water outside the channel. Examination of pore water trajectories reveals both single-file and path-crossing regimes to occur at different times within the simulation.  相似文献   

12.
To identify sequence-specific motifs associated with the formation of an ionic pore, we systematically evaluated the channel-forming activity of synthetic peptides with sequence of predicted transmembrane segments of the voltage-gated calcium channel. The amino acid sequence of voltage-gated, dihydropyridine (DHP)-sensitive calcium channels suggests the presence in each of four homologous repeats (I-IV) of six segments (S1-S6) predicted to form membrane-spanning, alpha-helical structures. Only peptides representing amphipathic segments S2 or S3 form channels in lipid bilayers. To generate a functional calcium channel based on a four-helix bundle motif, four-helix bundle proteins representing IVS2 (T4CaIVS2) or IVS3 (T4CaIVS3) were synthesized. Both proteins form cation-selective channels, but with distinct characteristics: the single-channel conductance in 50 mM BaCl2 is 3 pS and 10 pS. For T4CaIVS3, the conductance saturates with increasing concentration of divalent cation. The dissociation constants for Ba2+, Ca2+, and Sr2+ are 13.6 mM, 17.7 mM, and 15.0 mM, respectively. The conductance of T4CaIVS2 does not saturate up to 150 mM salt. Whereas T4CaIVS3 is blocked by microM Ca2+ and Cd2+, T4CaIVS2 is not blocked by divalent cations. Only T4CaIVS3 is modulated by enantiomers of the DHP derivative BayK 8644, demonstrating sequence requirement for specific drug action. Thus, only T4CaIVS3 exhibits pore properties characteristic also of authentic calcium channels. The designed functional calcium channel may provide insights into fundamental mechanisms of ionic permeation and drug action, information that may in turn further our understanding of molecular determinants underlying authentic pore structures.  相似文献   

13.
Membrane potential measurements using a fluorescent dye indicated that two specific toxins active against Spodoptera frugiperda larvae (CryIC and CryID) cause immediate permeability changes in midgut epithelial brush border membrane vesicles (BBMV). The initial response and the sustained permeability change are cationic, notvery K+ selective, and occur at in vivo lethal doses (nM). The toxin response has a different ion selectivity and is more sensitive to Ba2+ than the intrinsic cation permeability of BBMV. Experiments incorporating BBMV into planar lipid bilayers (PLB) demonstrated that these vesicles contain cation channels (31, 47 and 76 pS). A 2–40 fold conductance increase was induced by nM concentrations of toxin in PLB containing BBMV. Cationic single channel transitions of 50, 106, 360 and 752 pS were resolved. Thus, Bacillus thuringiensis δ-endotoxins induce an increase in cation membrane permeability involving ion channels in BBMV-containing functional receptors.  相似文献   

14.
The biotransformation of baccatin VI (1) and 1β-hydroxybaccatin I (2) with the filamentous fungus Aspergillus niger produced four new taxane diterpenoids taxumairol S1 (3), taxumairol T1 (4) and taxumairol S (5), taxumairol T (6), respectively. 1β-Dehydroxybaccatin VI (7) remained unreacted under the same condition.  相似文献   

15.
5-HT3A receptors select among permeant ions based on size and charge. The membrane-associated (MA) helix lines the portals into the channel’s cytoplasmic vestibule in the 4-Å resolution structure of the homologous acetylcholine receptor. 5-HT3A MA helix residues are important determinants of single-channel conductance. It is unknown whether the portals into the cytoplasmic vestibule also determine the size selectivity of permeant ions. We sought to determine whether the portals form the size selectivity filter. Recently, we showed that channels functioned when the entire 5-HT3A M3–M4 loop was replaced by the heptapeptide M3–M4 loop sequence from GLIC, a bacterial Cys-loop neurotransmitter gated ion channel homologue from Gloebacter violaceus. We used homomeric 5-HT3A receptors with either a wild-type (WT) M3–M4 loop or the chimeric heptapeptide (5-HT3A–glvM3M4) loop, i.e., with or without portals. In Na+-containing buffer, the WT receptor current–voltage relationship was inwardly rectifying. In contrast, the 5-HT3A–glvM3M4 construct had a negative slope conductance region at voltages less than −80 mV. Glutamine substitution for the heptapeptide M3–M4 loop arginine eliminated the negative slope conductance region. We measured the relative permeabilities and conductances of a series of inorganic and organic cations ranging from 0.9 to 4.5 Å in radius (Li+, Na+, ammonium, methylammonium, ethanolammonium, 2-methylethanolammonium, dimethylammonium, diethanolammonium, tetramethylammonium, choline, tris [hydroxymethyl] aminomethane, and N-methyl-d-glucamine). Both constructs had measurable conductances with Li+, ammonium, and methylammonium (size range of 0.9–1.8-Å radius). Many of the organic cations >2.4 Å acted as competitive antagonists complicating measurement of conductance ratios. Analysis of the permeability ratios by excluded volume theory indicates that the minimal pore radius for 5-HT3A and 5-HT3–glvM3M4 receptors was similar, ∼5 Å. We infer that the 5-HT3A size selectivity filter is located in the transmembrane channel and not in the portals into the cytoplasmic vestibule. Thus, the determinants of size selectivity and conductance are located in physically distinct regions of the channel protein.  相似文献   

16.
Cys-loop receptor neurotransmitter-gated ion channels are pentameric assemblies of subunits that contain three domains: extracellular, transmembrane, and intracellular. The extracellular domain forms the agonist binding site. The transmembrane domain forms the ion channel. The cytoplasmic domain is involved in trafficking, localization, and modulation by cytoplasmic second messenger systems but its role in channel assembly and function is poorly understood and little is known about its structure. The intracellular domain is formed by the large (>100 residues) loop between the alpha-helical M3 and M4 transmembrane segments. Putative prokaryotic Cys-loop homologues lack a large M3M4 loop. We replaced the complete M3M4 loop (115 amino acids) in the 5-hydroxytryptamine type 3A (5-HT(3A)) subunit with a heptapeptide from the prokaryotic homologue from Gloeobacter violaceus. The macroscopic electrophysiological and pharmacological characteristics of the homomeric 5-HT(3A)-glvM3M4 receptors were comparable to 5-HT(3A) wild type. The channels remained cation-selective but the 5-HT(3A)-glvM3M4 single channel conductance was 43.5 pS as compared with the subpicosiemens wild-type conductance. Coexpression of hRIC-3, a protein that modulates expression of 5-HT(3) and acetylcholine receptors, significantly attenuated 5-HT-induced currents with wild-type 5-HT(3A) but not 5-HT(3A)-glvM3M4 receptors. A similar deletion of the M3M4 loop in the anion-selective GABA-rho1 receptor yielded functional, GABA-activated, anion-selective channels. These results imply that the M3M4 loop is not essential for receptor assembly and function and suggest that the cytoplasmic domain may fold as an independent module from the transmembrane and extracellular domains.  相似文献   

17.
The N-terminal (NT) domain of the connexins forms an essential transjunctional voltage (Vj) sensor and pore-forming domain that when truncated, tagged, or mutated often leads to formation of a nonfunctional channel. The NT domain is relatively conserved among the connexins though the α- and δ-group connexins possess a G2 residue not found in the β- and γ-group connexins. Deletion of the connexin40 G2 residue (Cx40G2Δ) affected the Vj gating, increased the single channel conductance (γj), and decreased the relative K+/Cl? permeability (PK/PCl) ratio of the Cx40 gap junction channel. The conserved α/β-group connexin D2/3 and W3/4 loci are postulated to anchor the NT domain within the pore via hydrophilic and hydrophobic interactions with adjacent connexin T5 and M34 residues. Cx40D3N and D3R mutations produced limited function with progressive reductions in Vj gating and noisy low γj gap junction channels that reduced the γj of wild-type Cx40 channels from 150 pS to < 50 pS when coexpressed. Surprisingly, hydrophobic Cx40 W4F and W4Y substitution mutations were not compatible with function despite their ability to form gap junction plaques. These data are consistent with minor and major contributions of the G2 and D3 residues to the Cx40 channel pore structure, but not with the postulated hydrophobic W4 intermolecular interactions. Our results indicate an absolute requirement for an amphipathic W3/4 residue that is conserved among all α/β/δ/γ-group connexins. We alternatively hypothesize that the connexin D2/3-W3/4 locus interacts with the highly conserved FIFR M1 motif to stabilize the NT domain within the pore.  相似文献   

18.
Chao YY  Jan CR  Ko YC  Chen JJ  Jiann BP  Lu YC  Chen WC  Su W  Chen IS 《Life sciences》2002,70(26):4367-3121
The effect of five lignans isolated from Hernandia nymphaeifolia on estrogenic compounds (17β-estradiol, tamoxifen and clomiphene)-induced Ca2+ mobilization in human neutrophils was investigated. The five lignans were epi-yangambin, epi-magnolin, epi-aschantin, deoxypodophyllotoxin and yatein. In Ca2+–containing medium, the lignans (50–100 μM) inhibited 10 μM 17β-estradiol- and 5 μM tamoxifen-induced increases in intracellular free Ca2+ levels ([Ca2+]i) without changing 25 μM clomiphene-induced [Ca2+]i increase. 17β-estradiol and tamoxifen increased [Ca2+]i by causing Ca2+ influx and Ca2+ release because their responses were partly reduced by removing extracellular Ca2+. In contrast, clomiphene solely induced Ca2+ release. The effect of the lignans on these two Ca2+ movement pathways underlying 17β-estradiol- and tamoxifen-induced [Ca2+]i increases was explored. All the lignans (50–100 μM) inhibited 10 μM 17β-estradiol-and 5 μM tamoxifen-induced Ca2+ release, and 17β-estradiol-induced Ca2+ influx. However, only 100 μM epi-aschantin was able to reduce tamoxifen-induced Ca2+ influx while the other lignans had no effect. Collectively, this study shows that the lignans altered estrogenic compounds-induced Ca2+ signaling in human neutrophils in a multiple manner.  相似文献   

19.
The 5-HT3A receptor homology model, based on the partial structure of the nicotinic acetylcholine receptor from Torpedo marmorata, reveals an asymmetric ion channel with five portals framed by adjacent helical amphipathic (HA) stretches within the 114-residue loop between the M3 and M4 membrane-spanning domains. The positive charge of Arg-436, located within the HA stretch, is a rate-limiting determinant of single channel conductance (γ). Further analysis reveals that positive charge and volume of residue 436 are determinants of 5-HT3A receptor inward rectification, exposing an additional role for portals. A structurally unresolved stretch of 85 residues constitutes the bulk of the M3-M4 loop, leaving a >45-Å gap in the model between M3 and the HA stretch. There are no additional structural data for this loop, which is vestigial in bacterial pentameric ligand-gated ion channels and was largely removed for crystallization of the Caenorhabditis elegans glutamate-activated pentameric ligand-gated ion channels. We created 5-HT3A subunit loop truncation mutants, in which sequences framing the putative portals were retained, to determine the minimum number of residues required to maintain their functional integrity. Truncation to between 90 and 75 amino acids produced 5-HT3A receptors with unaltered rectification. Truncation to 70 residues abolished rectification and increased γ. These findings reveal a critical M3-M4 loop length required for functions attributable to cytoplasmic portals. Examination of all 44 subunits of the human neurotransmitter-activated Cys-loop receptors reveals that, despite considerable variability in their sequences and lengths, all M3-M4 loops exceed 70 residues, suggesting a fundamental requirement for portal integrity.  相似文献   

20.
The kinetic properties of main and subconductance states of a mutant mouse N-methyl-d-aspartate (NMDA) receptor channel were examined. Recombinant receptors made of ζ-ε2 (NR1-NR2B) subunits having asparagine-to-glutamine mutations in the M2 segment (ζN598Q /ε2N589Q) were expressed in Xenopus oocytes. Single channel currents recorded from outside-out patches were analyzed using hidden Markov model techniques. In Ca2+-free solutions, an open receptor channel occupies a main conductance (93 pS) and a subconductance (62 pS) with about equal probability. There are both brief and long-lived subconductance states, but only a single main level state. At −80 mV, the lifetime of the main and the longer-lived sub level are both ∼3.3 ms. The gating of the pore and the transition between conductance levels are essentially independent processes. Surprisingly, hyperpolarization speeds both the sub-to-main and main-to-sub transition rate constants (∼120 mV/e-fold change), but does not alter the equilibrium occupancies. Extracellular Ca2+ does not influence the transition rate constants. We conclude that the subconductance levels arise from fluctuations in the energetics of ion permeation through a single pore, and that the voltage dependence of these fluctuations reflects the modulation by the membrane potential of the barrier between the main and subconductance conformations of the pore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号