首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flor formation and flor endurance have been related to ability by Saccharomyces cerevisiae flor yeasts to resist hostile conditions such as oxidative stress and the presence of acetaldehyde and ethanol. Ethanol and acetaldehyde toxicity give rise to formation of reactive oxygen species (ROS) and loss of cell viability. Superoxide dismutases Sod1p and Sod2p and other proteins such as Hsp12p are involved in oxidative stress tolerance. In this study, genes SOD1, SOD2, and HSP12 were overexpressed in flor yeast strains FJF206, FJF414 and B16. In the SOD1 and SOD2 transformant strains superoxide dismutases encoded by genes SOD1 and SOD2 increased their specific activity considerably as a direct result of overexpression of genes SOD1 and SOD2, indirectly, catalase, glutathione reductase, and glutathione peroxidase activities increased too. The HSP12 transformant strains showed higher levels of glutathione peroxidase and reductase activities. These transformant strains showed an increase in intracellular glutathione content, a reduction in peroxidized lipid concentration, and higher resistance to oxidative stress conditions. As a result, flor formation by these strains took place more rapidly than by their parental strains, velum being thicker and with higher percentages of viable cells. In addition, a slight decrease in ethanol and glycerol concentrations, and an increase in acetaldehyde were detected in wines matured under velum formed by transformant strains, as compared to their parental strains. In the industry, velum formed by transformant strains with increased viability may result in acceleration of both metabolism and wine aging, thus reducing time needed for wine maturation.  相似文献   

2.
Yeast Btn2 facilitates the retrieval of specific proteins from late endosomes (LEs) to the Golgi, a process that may be adversely affected in Batten disease patients. We isolated the putative yeast orthologue of a human complex I deficiency gene, designated here as BTN3, as encoding a Btn2-interacting protein and negative regulator. First, yeast overexpressing BTN3 phenocopy the deletion of BTN2 and mislocalize certain trans-Golgi proteins, like Kex2 and Yif1, to the LE and vacuole, respectively. In contrast, the deletion of BTN3 results in a tighter pattern of protein localization to the Golgi. Second, BTN3 overexpression alters Btn2 localization from the IPOD compartment, which correlates with a sharp reduction in Btn2-mediated [URE3] prion curing. Third, Btn3 and the Snc1 v-SNARE compete for the same binding domain on Btn2, and this competition controls Btn2 localization and function. The inhibitory effects upon protein retrieval and prion curing suggest that Btn3 sequesters Btn2 away from its substrates, thus down-regulating protein trafficking and aggregation. Therefore Btn3 is a novel negative regulator of intracellular protein sorting, which may be of importance in the onset of complex I deficiency and Batten disease in humans.  相似文献   

3.
4.
Flor yeasts grow and survive in fino sherry wine where the frequency of respiratory-deficient (petite) mutants is very low. Mitochondria from flor yeasts are highly acetaldehyde- and ethanol-tolerant, and resistant to oxidative stress. However, restriction fragment length polymorphism (RFLP) of mtDNA from flor yeast populations is very high and reflects variability induced by the high concentrations of acetaldehyde and ethanol of sherry wine on mtDNA. mtDNA RFLP increases as the concentration of these compounds also increases, but is followed by a total loss of mtDNA in petite cells. Yeasts with functional mitochondria (grande) are target of continuous variability, so that flor yeast mtDNA can evolve extremely rapidly and may serve as a reservoir of genetic diversity, whereas petite mutants are eventually eliminated because metabolism in sherry wine is oxidative.  相似文献   

5.
The BTN1 gene product of the yeast Saccharomyces cerevisiae is 39% identical and 59% similar to human CLN3, which is associated with the neurodegenerative disorder Batten disease. Furthermore, btn1-Delta strains have an elevated activity of the plasma membrane H(+)-ATPase due to an abnormally high vacuolar acidity during the early phase of growth. Previously, DNA microarray analysis revealed that btn1-Delta strains compensate for the altered plasma membrane H(+)-ATPase activity and vacuolar pH by elevating the expression of the two genes HSP30 and BTN2. We now show that deletion of either HSP30 or BTN2 in either BTN1(+) or btn1-Delta strains does not alter vacuolar pH but does lead to an increased activity of the vacuolar H(+)-ATPase. Deletion of BTN1, BTN2, or HSP30 does not alter cytosolic pH but diminishes pH buffering capacity and causes poor growth at low pH in a medium containing sorbic acid, a condition known to result in disturbed intracellular pH homeostasis. Btn2p was localized to the cytosol, suggesting a role in mediating pH homeostasis between the vacuole and plasma membrane H(+)-ATPase. Increased expression of HSP30 and BTN2 in btn1-Delta strains and diminished growth of btn1-Delta, hsp30-Delta, and btn2-Delta strains at low pH reinforce our view that altered pH homeostasis is the underlying cause of Batten disease.  相似文献   

6.
In the production of sherry wines, the process of biological aging is essential for the development of their organoleptic properties. This process involves velum formation by "flor" yeasts. Several of these yeast strains have been isolated and characterized with regard to their genetic, physiological and metabolic properties. In this work, we studied their resistance to cold-, osmotic-, oxidative-, ethanol- and acetaldehyde-stress, and found, in most cases, a correlation between resistance to acetaldehyde stress and ethanol stress and isolation from "soleras." Moreover, gene expression analysis revealed induction of the heat shock protein (HSP) genes HSP12, HSP82, and especially HSP26 and HSP104, under acetaldehyde stress in most of the strains. In strain C, there was a clear correlation between resistance to ethanol and acetaldehyde, the high induction of HSP genes by these compounds and its presence as the predominant strain in most levels of several soleras.  相似文献   

7.
The human Batten disease gene CLN3 and yeast orthologue BTN1 encode proteins of unclear function. We show that the loss of BTN1 phenocopies that of BTN2, which encodes a retromer accessory protein involved in the retrieval of specific cargo from late endosomes (LEs) to the Golgi. However, Btn1 localizes to Golgi and regulates soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor (SNARE) function to control retrograde transport. Specifically, BTN1 overexpression and deletion have opposing effects on phosphorylation of the Sed5 target membrane SNARE, on Golgi SNARE assembly, and on Golgi integrity. Although Btn1 does not interact physically with SNAREs, it regulates Sed5 phosphorylation by modulating Yck3, a palmitoylated endosomal kinase. This may involve modification of the Yck3 lipid anchor, as substitution with a transmembrane domain suppresses the deletion of BTN1 and restores trafficking. Correspondingly, deletion of YCK3 mimics that of BTN1 or BTN2 with respect to LE-Golgi retrieval. Thus, Btn1 controls retrograde sorting by regulating SNARE phosphorylation and assembly, a process that may be adversely affected in Batten Disease patients.  相似文献   

8.
BTN2 gene expression in the yeast Saccharomyces cerevisiae is up-regulated in response to the deletion of BTN1, which encodes the ortholog of a human Batten disease protein. We isolated Btn2 as a Snc1 v-SNARE binding protein using the two-hybrid assay and examined its role in intracellular protein trafficking. We show that Btn2 is an ortholog of the Drosophila and mammalian Hook1 proteins that interact with SNAREs, cargo proteins, and coat components involved in endosome-Golgi protein sorting. By immunoprecipitation, it was found that Btn2 bound the yeast endocytic SNARE complex (e.g., Snc1 and Snc2 [Snc1/2], Tlg1, Tlg2, and Vti1), the Snx4 sorting nexin, and retromer (e.g., Vps26 and Vps35). In in vitro binding assays, recombinant His(6)-tagged Btn2 bound glutathione S-transferase (GST)-Snc1 and GST-Vps26. Btn2-green fluorescent protein and Btn2-red fluorescent protein colocalize with Tlg2, Snx4, and Vps27 to a compartment adjacent to the vacuole that corresponds to a late endosome. The deletion of BTN2 blocks Yif1 retrieval back to the Golgi apparatus, while the localization of Ste2, Fur4, Snc1, Vps10, carboxypeptidases Y (CPY) and S (CPS), Sed5, and Sec7 is unaltered in btn2Delta cells. Yif1 delivery to the vacuole was observed in other late endosome-Golgi trafficking mutants, including ypt6Delta, snx4Delta, and vps26Delta cells. Thus, Btn2 facilitates specific protein retrieval from a late endosome to the Golgi apparatus, a process which may be adversely affected in patients with Batten disease.  相似文献   

9.
The flor strains of Saccharomyces cerevisiae form a flor on the surface of wine after alcoholic fermentation. High hydrophobicity of the cell surface is suggested to be important for flor formation by the flor wine yeasts. However, the molecular mechanism of flor formation is not clear. We found that expression of C-terminal deleted NRG1 lacking its two C2H2 zinc finger motifs (NRG1(1-470)) on the multicopy plasmid conferred the ability to form a flor to a non-flor laboratory strain. The cell surface hydrophobicity of NRG1(1-470) was higher than of the non-flor strain. Disruption of the Nrg1p-repressed gene FLO11, which encodes a cell surface glycoprotein that functions as a flocculin or an adhesin, abolished flor formation. Moreover, expression of FLO11 on a multicopy plasmid could also cause flor formation. These results indicate that FLO11 is essential for flor formation by NRG1(1-470). In addition, the results suggest that the C-terminal truncated form of Nrg1p exerts a dominant negative effect on FLO11 repression, resulting in FLO11 expression and, thus, flor formation.  相似文献   

10.
Some strains of Saccharomyces cerevisiae form a biofilm called a "flor" on the surface of wine after ethanolic fermentation, but the molecular mechanism of flor formation by the wild-type flor strain involved in wine making is not clear. Previously, we found that expression of the C-terminally truncated form of NRG1 (NRG1(1-470)) on a multicopy plasmid increases the hydrophobicity of the cell surface, conferring flor formation on the non-flor laboratory strain. Here we show that in Ar5-H12, a wild-type flor haploid strain, flor formation is regulated by NRG1(1-470). Moreover, the disruptant of the wild-type flor diploid strain (Deltaflo11/Deltaflo11) show a weak ability to form the flor. The expression of FLO11 is always high in the wild-type flor strain, regardless of carbon source. Thus FLO11 is primary factor for wild-type flor strains. Furthermore, the disruptant (Deltaflo11) shows lower hydrophobicity of cell surface than the wild type. However, the hydrophobicity of the wild-type flor strains grown in ethanol medium was much higher than those grown in glucose medium. These results indicate that cell surface hydrophobicity is closely related to flor formation in wild-type flor yeasts.  相似文献   

11.
[URE3] is a prion (infectious protein), a self-propagating amyloid form of Ure2p, a regulator of yeast nitrogen catabolism. We find that overproduction of Btn2p, or its homologue Ypr158 (Cur1p), cures [URE3]. Btn2p is reported to be associated with late endosomes and to affect sorting of several proteins. We find that double deletion of BTN2 and CUR1 stabilizes [URE3] against curing by several agents, produces a remarkable increase in the proportion of strong [URE3] variants arising de novo and an increase in the number of [URE3] prion seeds. Thus, normal levels of Btn2p and Cur1p affect prion generation and propagation. Btn2p-green fluorescent protein (GFP) fusion proteins appear as a single dot located close to the nucleus and the vacuole. During the curing process, those cells having both Ure2p-GFP aggregates and Btn2p-RFP dots display striking colocalization. Btn2p curing requires cell division, and our results suggest that Btn2p is part of a system, reminiscent of the mammalian aggresome, that collects aggregates preventing their efficient distribution to progeny cells.  相似文献   

12.
Btn2p, a novel coiled-coil protein, is up-regulated in btn1Δ yeast strains, and this up-regulation is thought to contribute to maintaining a stable vacuolar pH in btn1Δ strains (D. A. Pearce, T. Ferea, S. A. Nosel, B. Das, and F. Sherman, Nat. Genet. 22:55-58, 1999). We now report that Btn2p interacts biochemically and functionally with Rsg1p, a down-regulator of the Can1p arginine and lysine permease. Rsg1p localizes to a distinct structure toward the cell periphery, and strains lacking Btn2p (btn2Δ strains) fail to correctly localize Rsg1p. btn2Δ strains, like rsg1Δ strains, are sensitive for growth in the presence of the arginine analog canavanine. Furthermore, btn2Δ strains, like rsg1Δ strains, demonstrate an elevated rate of uptake of [14C]arginine, which leads to increased intracellular levels of arginine. Overexpression of BTN2 results in a decreased rate of arginine uptake. Collectively, these results indicate that altered levels of Btn2p can modulate arginine uptake through localization of the Can1p-arginine permease regulatory protein, Rsg1p. Our original identification of Btn2p was that it is up-regulated in the btn1Δ strain which serves as a model for the lysosomal storage disorder Batten disease. Btn1p is a vacuolar/lysosomal membrane protein, and btn1Δ suppresses both the canavanine sensitivity and the elevated rate of uptake of arginine displayed by btn2Δ rsg1Δ strains. We conclude that Btn2p interacts with Rsg1p and modulates arginine uptake. Up-regulation of BTN2 expression in btn1Δ strains may facilitate either a direct or indirect effect on intracellular arginine levels.  相似文献   

13.
Wine biological aging is a wine making process used to produce specific beverages in several countries in Europe, including Spain, Italy, France, and Hungary. This process involves the formation of a velum at the surface of the wine. Here, we present the first large scale comparison of all European flor strains involved in this process. We inferred the population structure of these European flor strains from their microsatellite genotype diversity and analyzed their ploidy. We show that almost all of these flor strains belong to the same cluster and are diploid, except for a few Spanish strains. Comparison of the array hybridization profile of six flor strains originating from these four countries, with that of three wine strains did not reveal any large segmental amplification. Nonetheless, some genes, including YKL221W/MCH2 and YKL222C, were amplified in the genome of four out of six flor strains. Finally, we correlated ICR1 ncRNA and FLO11 polymorphisms with flor yeast population structure, and associate the presence of wild type ICR1 and a long Flo11p with thin velum formation in a cluster of Jura strains. These results provide new insight into the diversity of flor yeast and show that combinations of different adaptive changes can lead to an increase of hydrophobicity and affect velum formation.  相似文献   

14.
Saccharomyces flor yeasts proliferate at the surface of sherry wine, which contains over 15% (vol) ethanol. Since ethanol is a powerful inducer of respiration-deficient mutants, this alcohol has been proposed to be the source of the high diversity found in the mitochondrial genomes of flor yeasts and other wine yeasts. Southern blot analysis suggests that mitochondrial DNA (mtDNA) polymorphic changes are due to minor lesions in the mitochondrial genome. As determined in this work by pulsed-field gel electrophoresis, restriction analysis, and Southern blot analysis, ethanol-induced petite mutants completely lack mtDNA (rho zero). Ethanol-induced changes in the mitochondrial genome that could explain the observed mtDNA polymorphism in flor yeasts were not found. The transfer of two different mtDNA variants from flor yeasts to a laboratory strain conferred in both cases an increase in ethanol tolerance in the recipient strain, suggesting that mtDNAs are probably subjected to positive selection pressure concerning their ability to confer ethanol tolerance.  相似文献   

15.
Six commercial wine yeast strains and three nonindustrial strains (two laboratory strains and one haploid strain derived from a wine yeast strain) were engineered to produce large amounts of glycerol with a lower ethanol yield. Overexpression of the GPD1 gene, encoding a glycerol-3-phosphate dehydrogenase, resulted in a 1.5- to 2.5-fold increase in glycerol production and a slight decrease in ethanol formation under conditions simulating wine fermentation. All the strains overexpressing GPD1 produced a larger amount of succinate and acetate, with marked differences in the level of these compounds between industrial and nonindustrial engineered strains. Acetoin and 2,3-butanediol formation was enhanced with significant variation between strains and in relation to the level of glycerol produced. Wine strains overproducing glycerol at moderate levels (12 to 18 g/liter) reduced acetoin almost completely to 2,3-butanediol. A lower biomass concentration was attained by GPD1-overexpressing strains, probably due to high acetaldehyde production during the growth phase. Despite the reduction in cell numbers, complete sugar exhaustion was achieved during fermentation in a sugar-rich medium. Surprisingly, the engineered wine yeast strains exhibited a significant increase in the fermentation rate in the stationary phase, which reduced the time of fermentation.  相似文献   

16.
Several indigenous Saccharomyces strains from musts were isolated in the Jerez de la Frontera region, at the end of spontaneous fermentation, in order to select the most suitable autochthonous yeast starter, during the 2007 vintage. Five strains were chosen for their oenological abilities and fermentative kinetics to elaborate a Sherry base wine. The selected autochthonous strains were characterized by molecular methods: electrophoretic karyotype and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) and by physiological parameters: fermentative power, ethanol production, sugar consumption, acidity and volatile compound production, sensory quality, killer phenotype, desiccation, and sulphur dioxide tolerance. Laboratory- and pilot-scale fermentations were conducted with those autochthonous strains. One of them, named J4, was finally selected over all others for industrial fermentations. The J4 strain, which possesses exceptional fermentative properties and oenological qualities, prevails in industrial fermentations, and becomes the principal biological agent responsible for winemaking. Sherry base wine, industrially manufactured by means of the J4 strain, was analyzed, yielding, together with its sensory qualities, final average values of 0.9 g/l sugar content, 13.4 % (v/v) ethanol content and 0.26 g/l volatile acidity content; apart from a high acetaldehyde production, responsible for the distinctive aroma of “Fino”. This base wine was selected for “Fino” Sherry elaboration and so it was fortified; it is at present being subjected to biological aging by the so-called “flor” yeasts. The “flor” velum formed so far is very high quality. To the best of our knowledge, this is the first study covering from laboratory to industrial scale of characterization and selection of autochthonous starter intended for alcoholic fermentation in Sherry base wines. Since the 2010 vintage, the indigenous J4 strain is employed to industrially manufacture a homogeneous, exceptional Sherry base wine for “Fino” Sherry production.  相似文献   

17.
The specific flavour of Sherry-type wines requires aromatic compounds produced as by-products of the oxidative metabolism of yeasts that are able to form a biofilm (flor) at the wine surface. A similar yeast pellicle develops on the surface of 'Tokaji Szamorodni', one of the traditional Hungarian botrytized wines, during maturation. In this work, patterns of biotinylated cell wall proteins extracted from film-forming and nonfilm-forming Saccharomyces cerevisiae strains were compared. It was found that all the tested 23 film-forming 'Szamorodni' yeast strains had a decreased size of the Ccw7/Hsp150 protein, one of the members of the Pir-protein family. Sequencing of the encoding genes revealed that the strains were lacking three out of the 11 repeating sequences characteristic to this protein family. One of the film-forming strains contained CCW7 alleles of different length, which was generated by intragenic tandem duplication of a sequence containing two repetitive domains. Unlike the film-forming strains, 16 nonfilm-forming wine yeasts isolated from a different botrytized wine, 'Tokaji Aszu', showed pronounced polymorphism of the CCW7 locus. It is highly probable that the modified Ccw7 protein does not contribute to the increased hydrophobicity of film-forming strains but it may influence molecular reorganization of the cell wall during stress adaptation.  相似文献   

18.
Saccharomyces cerevisiae “flor” yeasts have the ability to form a buoyant biofilm at the air-liquid interface of wine. The formation of biofilm, also called velum, depends on FLO11 gene length and expression. FLO11 encodes a cell wall mucin-like glycoprotein with a highly O-glycosylated central domain and an N-terminal domain that mediates homotypic adhesion between cells. In the present study, we tested previously known antimicrobial peptides with different mechanisms of antimicrobial action for their effect on the viability and ability to form biofilm of S. cerevisiae flor strains. We found that PAF26, a synthetic tryptophan-rich cationic hexapeptide that belongs to the class of antimicrobial peptides with cell-penetrating properties, but not other antimicrobial peptides, enhanced biofilm formation without affecting cell viability in ethanol-rich medium. The PAF26 biofilm enhancement required a functional FLO11 but was not accompanied by increased FLO11 expression. Moreover, fluorescence microscopy and flow cytometry analyses showed that the PAF26 peptide binds flor yeast cells and that a flo11 gene knockout mutant lost the ability to bind PAF26 but not P113, a different cell-penetrating antifungal peptide, demonstrating that the FLO11 gene is selectively involved in the interaction of PAF26 with cells. Taken together, our data suggest that the cationic and hydrophobic PAF26 hexapeptide interacts with the hydrophobic and negatively charged cell wall, favoring Flo11p-mediated cell-to-cell adhesion and thus increasing biofilm biomass formation. The results are consistent with previous data that point to glycosylated mucin-like proteins at the fungal cell wall as potential interacting partners for antifungal peptides.  相似文献   

19.
Sixteen flor yeast strains from the Magarach Collection of the Microorganisms for Winemaking (Yalta, Crimea), which are used for production of sherry, were analyzed for morphophysiological, cultural, and biochemical properties. Long-term storage did not affect their viability or the preservation of major properties, such as their flor- and aldehyde-forming abilities, and the ability to produce wines with typical sherry properties. Significant variation in the strains was observed mainly in the aldehyde-forming and flor-forming abilities and flor properties. Interdelta typing was shown to be the most informative technique to study the genetic diversity of flor yeast strains. Certain correlations between genetic polymorphisms and the enological properties of the strains were observed. The presence of a 24-bp long deletion in the ITS1 spacer of the ribosomal gene cluster, a typical feature of Spanish flor yeast strains, is correlated with a high level of production of aldehydes and acetales, efficient flor formation, and the ability to produce high quality sherry. The presence of a specific deletion in the promoter of the FLO11 gene appeared to be less informative, since the aldehyde and acetal production and flor formation abilities of such strains were variable. The studies of intraspecies genetic polymorphism by various molecular markers have revealed a high degree of phylogenetic closeness of some yeast flor strains from different geographic regions.  相似文献   

20.
During experiments to determine the effects of exogenously added acetaldehyde on pure cultures of various yeast strains, we discovered that an early acetaldehyde perfusion during the growth phase allowed several yeasts to partially overcome the phenotypic effects of zinc depletion during alcoholic fermentation. We, therefore, performed genome-wide expression and proteomic analysis on an industrial Saccharomyces cerevisiae yeast strain (VL1) growing in zinc-replete or zinc-depleted conditions in the presence of perfused acetaldehyde to identify molecular markers of this effect. Zinc depletion severely affects ethanol production and therefore nicotinamide adenine dinucleotide (NAD) regeneration, although we observed partial compensation by the upregulation of the poorly efficient Fe-dependent Adh4p in our conditions. A coordinate metabolic response was indeed observed in response to the early acetaldehyde perfusion, and particularly of the lower part of glycolysis, leading to the cellular replenishment of NAD cofactor. These various findings suggest that acetaldehyde exchange between strains may inhibit the growth of some yeast strains while encouraging the growth of others. This phenomenon could be particularly important for understanding the ecology of colonization of complex fermentation media by S. cerevisiae after elimination of non-Saccharomyces yeasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号