首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recent studies have shown that Bordetella bronchiseptica utilizes a siderophore-mediated transport system for acquisition of iron from the host iron-binding proteins lactoferrin and transferrin. We recently identified the B. bronchiseptica siderophore as alcaligin, which is also produced by B. pertussis. Alcaligin production by B. bronchiseptica is repressed by exogenous iron, a phenotype of other microbes that produce siderophores. In this study, we report that alcaligin production by B. bronchiseptica RB50 and GP1SN was repressed by the Bordetella global virulence regulator, bvg, in addition to being Fe repressed. Modulation of bvg locus expression with 50 mM MgSO4 or inactivation of bvg by deletion allowed strain RB50 to produce alcaligin. In modulated organisms, siderophore production remained Fe repressed. These observations contrasted with our previous data indicating that alcaligin production by B. bronchiseptica MBORD846 and B. pertussis was repressed by Fe but bvg independent. Despite bvg repression of alcaligin production, strain RB50 was still able to acquire Fe from purified alcaligin, suggesting that expression of the bacterial alcaligin receptor was not repressed by bvg. We tested 114 B. bronchiseptica strains and found that bvg repression of alcaligin production was strongly associated with Bordetella phylogenetic lineage and with host species from which the organisms were isolated.  相似文献   

3.
4.
5.
6.
The bacterial respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica employ multiple alternative iron acquisition pathways to adapt to changes in the mammalian host environment during infection. The alcaligin, enterobactin, and heme utilization pathways are differentially expressed in response to the cognate iron source availability by a mechanism involving substrate-inducible positive regulators. As inducers, the iron sources function as chemical signals termed ferrimones. Ferrimone-sensing allows the pathogen to adapt and exploit early and late events in the infection process.  相似文献   

7.
A total of 230 Salmonella strains were screened for enterobactin and aerobactin production, sensitivity to bacteriocins and resistance to antibiotics. All the isolates produced the phenolate siderophore enterobactin. Amongst these, 74 strains, most belonging to S. enteritidis, were sensitive to colicin B. Only 26 isolates, all belonging to S. wien, produced an additional iron chelator, i.e. the siderophore aerobactin, and 22 out of these were sensitive to cloacin DF13. Analysis of iron repressible outer membrane proteins and plasmid profiles in S. wien strains showed that the expression of a 74-kDa iron-repressible outer membrane protein and the presence of large plasmids were associated with multiple antibiotic resistance, aerobactin production and sensitivity to cloacin DF13. The incidence of aerobactin-producing strains among S. wien isolates was higher during years 1974-1985; the epidemiological implications of these results are discussed.  相似文献   

8.
9.
10.
Chromosomal insertions defining Bordetella bronchiseptica siderophore phenotypic complementation group III mutants BRM3 and BRM5 were found to reside approximately 200 to 300 bp apart by restriction mapping of cloned genomic regions associated with the insertion markers. DNA hybridization analysis using B. bronchiseptica genomic DNA sequences flanking the cloned BRM3 insertion marker identified homologous Bordetella pertussis UT25 cosmids that complemented the siderophore biosynthesis defect of the group III B. bronchiseptica mutants. Subcloning and complementation analysis localized the complementing activity to a 2.8-kb B. pertussis genomic DNA region. Nucleotide sequencing identified an open reading frame predicted to encode a polypeptide exhibiting strong similarity at the primary amino acid level with several pyridoxal phosphate-dependent amino acid decarboxylases. Alcaligin production was fully restored to group III mutants by supplementation of iron-depleted culture media with putrescine (1,4-diaminobutane), consistent with defects in an ornithine decarboxylase activity required for alcaligin siderophore biosynthesis. Concordantly, the alcaligin biosynthesis defect of BRM3 was functionally complemented by the heterologous Escherichia coli speC gene encoding an ornithine decarboxylase activity. Enzyme assays confirmed that group III B. bronchiseptica siderophore-deficient mutants lack an ornithine decarboxylase activity required for the biosynthesis of alcaligin. Siderophore production by an analogous mutant of B. pertussis constructed by allelic exchange was undetectable. We propose the designation odc for the gene defined by these mutations that abrogate alcaligin siderophore production. Putrescine is an essential precursor of alcaligin in Bordetella spp.  相似文献   

11.
12.
13.
The recently discovered pathogen Bordetella holmesii has been isolated from the airways and blood of diseased humans. Genetic events contributing to the emergence of B. holmesii are not understood, and its phylogenetic position among the bordetellae remains unclear. To address these questions, B. holmesii strains were analyzed by comparative genomic hybridization (CGH) to a Bordetella pertussis microarray and by multilocus sequence typing. Both methods indicated substantial sequence divergence between B. pertussis and B. holmesii. However, CGH identified a putative pathogenicity island of 66 kb that is highly conserved between these species and contains several IS481 elements that may have been laterally transferred from B. pertussis to B. holmesii. This island contains, among other genes, a functional, iron-regulated locus encoding the biosynthesis, export, and uptake of the siderophore alcaligin. The acquisition of this genomic island by B. holmesii may have significantly contributed to its emergence as a human pathogen. Horizontal gene transfer between B. pertussis and B. holmesii may also explain the unusually high sequence identity of their 16S rRNA genes.  相似文献   

14.
The siderophores produced by iron-starved Bordetella pertussis and B. bronchiseptica were purified and were found to be identical. Using mass spectrometry and proton nuclear magnetic resonance, we determined that the siderophore produced by these organisms was identical to alcaligin, a siderophore produced by Alcaligenes denitrificans.  相似文献   

15.
16.
17.
It has been demonstrated that under iron-restricted conditions Bordetella pertussis can obtain iron from iron-saturated human transferrin. Direct contact between B. pertussis and transferrin was not required as B. pertussis was able to acquire iron from transferrin when they were separated by a dialysis membrane. Siderophore activity was detected in supernatants from iron-restricted cultures of B. pertussis, B. bronchiseptica and B. parapertussis. Siderophores were identified as hydroxamates and were produced by both virulent and avirulent strains of B. pertussis.  相似文献   

18.
A putative operon encoding an uncharacterized ferrous iron transport (FtrABCD) system was previously identified in cDNA microarray studies. In growth studies using buffered medium at pH values ranging from pH 6.0 to 7.6, Bordetella pertussis and Bordetella bronchiseptica FtrABCD system mutants showed dramatic reductions in growth yields under iron‐restricted conditions at pH 6.0, but had no growth defects at pH 7.6. Supplementation of culture medium with 2 mM ascorbate reductant was inhibitory to alcaligin siderophore‐dependent growth at pH 7.6, but had a neglible effect on FtrABCD system‐dependent iron assimilation at pH 6.0 consistent with its predicted specificity for ferrous iron. Unlike Bordetella siderophore‐dependent and haem iron transport systems, and in agreement with its hypothesized role in transport of inorganic iron from periplasm to cytoplasm, FtrABCD system function did not require the TonB energy transduction complex. Gene fusion analysis revealed that ftrABCD promoter activity was maximal under iron‐restricted growth conditions at acidic pH. The pH of human airway surface fluids ranges from pH 5.5 to 7.9, and the FtrABCD system may supply ferrous iron necessary for Bordetella growth in acidic host microenvironments in which siderophores are ineffective for iron retrieval.  相似文献   

19.
Unlike other cytochromes, c-type cytochromes have two covalent bonds formed between the two vinyl groups of haem and two cysteines of the protein. This haem ligation requires specific assembly proteins in prokaryotes or eukaryotic mitochondria and chloroplasts. Here, it is shown that Bordetella pertussis is an excellent bacterial model for the widespread system II cytochrome c synthesis pathway. Mutations in four different genes (ccsA, ccsB, ccsX and dipZ) result in B. pertussis strains unable to synthesize any of at least seven c-type cytochromes. Using a cytochrome c4:alkaline phosphatase fusion protein as a bifunctional reporter, it was demonstrated that the B. pertussis wild-type and mutant strains secrete an active alkaline phosphatase fusion protein. However, unlike the wild type, all four mutants are unable to attach haem covalently, resulting in a degraded N-terminal apocytochrome c4 component. Thus, apocytochrome c secretion is normal in each of the four mutants, but all are defective in a periplasmic assembly step (or export of haem). CcsX is related to thioredoxins, which possess a conserved CysXxxXxxCys motif. Using phoA gene fusions as reporters, CcsX was proven to be a periplasmic thioredoxin-like protein. Both the B. pertussis dipZ (i. e. dsbD) and ccsX mutants are corrected for their assembly defects by the thiol-reducing compounds, dithiothreitol and 2-mercaptoethanesulphonic acid. These results indicate that DipZ and CcsX are required for the periplasmic reduction of the cysteines of apocytochromes c before ligation. In contrast, the ccsA and ccsB mutants are not corrected by exogenous reducing agents, suggesting that CcsA and CcsB are required for the haem ligation step itself in the periplasm (or export of haem to the periplasm). Related to this suggestion, the topology of CcsB was determined experimentally, demonstrating that CcsB has four transmembrane domains and a large 435-amino-acid periplasmic region.  相似文献   

20.
Bordetella pertussis was able to grow in vitro under conditions where the only iron present was bound to the iron-binding proteins ovotransferrin, transferrin or lactoferrin. Under these conditions the bacteria produced neither hydroxamate nor phenolate-catecholate siderophores to assist in the procurement of iron. Examination of B. pertussis outer-membrane preparations by SDS-PAGE and immunoblotting showed that the iron-binding protein ovotransferrin was bound directly to the bacterial surface. Assays of the binding of radiolabelled transferrin by the bacteria showed that the association was a specific process and that there was turnover of the bound proteins. Competitive binding assays indicated that lactoferrin could be bound in the same way. It is suggested that B. pertussis obtains iron directly from host iron-binding proteins during infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号