首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant endo‐β‐1,4‐glucanases (EGases) include cell wall‐modifying enzymes that are involved in nematode‐induced growth of syncytia (feeding structures) in nematode‐infected roots. EGases in the α‐ and β‐subfamilies contain signal peptides and are secreted, whereas those in the γ‐subfamily have a membrane‐anchoring domain and are not secreted. The Arabidopsis α‐EGase At1g48930, designated as AtCel6, is known to be down‐regulated by beet cyst nematode (Heterodera schachtii) in Arabidopsis roots, whereas another α‐EGase, AtCel2, is up‐regulated. Here, we report that the ectopic expression of AtCel6 in soybean roots reduces susceptibility to both soybean cyst nematode (SCN; Heterodera glycines) and root knot nematode (Meloidogyne incognita). Suppression of GmCel7, the soybean homologue of AtCel2, in soybean roots also reduces the susceptibility to SCN. In contrast, in studies on two γ‐EGases, both ectopic expression of AtKOR2 in soybean roots and suppression of the soybean homologue of AtKOR3 had no significant effect on SCN parasitism. Our results suggest that secreted α‐EGases are likely to be more useful than membrane‐bound γ‐EGases in the development of an SCN‐resistant soybean through gene manipulation. Furthermore, this study provides evidence that Arabidopsis shares molecular events of cyst nematode parasitism with soybean, and confirms the suitability of the Arabidopsis–H. schachtii interaction as a model for the soybean–H. glycines pathosystem.  相似文献   

2.
3.
4.
Formation of polyploid organisms by fertilization of unreduced gametes in meiotic mutants is believed to be a common phenomenon in species evolution. However, not well understood is how species in nature generally exist as haploid and diploid organisms in a long evolutionary time while polyploidization must have repeatedly occurred via meiotic mutations. Here, we show that the ploidy increased for two consecutive generations due to unreduced but viable gametes in the Arabidopsis cyclin a1;2‐2 (also named tardy asynchronous meiosis‐2) mutant, but the resultant octaploid plants produced progeny of either the same or reduced ploidy via genomic reductions during meiosis and pollen mitosis. Ploidy reductions through sexual reproduction were also observed in independently generated artificial octaploid and hexaploid Arabidopsis plants. These results demonstrate that octaploid is likely the maximal ploidy produced through sexual reproduction in Arabidopsis. The polyploidy‐associated genomic instability may be a general phenomenon that constrains ploidy levels in species evolution. genesis 48:254–263, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
In the Arabidopsis root, asymmetric stem-cell divisions produce daughters that form the different root cell types. Here we report the establishment of a confocal tracking system that allows the analysis of numbers and orientations of cell divisions in root stem cells. The system provides direct evidence that stem cells have lower division rates than cells in the proximal meristem. It also allows tracking of cell division timing, which we have used to analyse the synchronization of root cap divisions. Finally, it gives new insights into lateral root cap formation: epidermal stem-cell daughters can rotate the orientation of the division plane like the stem cell.  相似文献   

17.
We used bisulfite sequencing to study the methylation of a viral transgene whose expression was silenced upon plum pox virus infection of the transgenic plant and its subsequent recovery as a consequence of so‐called virus‐induced gene silencing (VIGS). VIGS was associated with a general increase in the accumulation of small RNAs corresponding to the coding region of the viral transgene. After VIGS, the transgene promoter was not methylated and the coding region showed uneven methylation, with the 5′ end being mostly unmethylated in the recovered tissue or mainly methylated at CG sites in regenerated silenced plants. The methylation increased towards the 3′ end, which showed dense methylation in all three contexts (CG, CHG and CHH). This methylation pattern and the corresponding silenced status were maintained after plant regeneration from recovered silenced tissue and did not spread into the promoter region, but were not inherited in the sexual offspring. Instead, a new pattern of methylation was observed in the progeny plants consisting of disappearance of the CHH methylation, similar CHG methylation at the 3′ end, and an overall increase in CG methylation in the 5′ end. The latter epigenetic state was inherited over several generations and did not correlate with transgene silencing and hence virus resistance. These results suggest that the widespread CG methylation pattern found in body gene bodies located in euchromatic regions of plant genomes may reflect an older silencing event, and most likely these genes are no longer silenced.  相似文献   

18.
Diacylglycerol acyltransferase‐1 (DGAT1), a key enzyme in triglyceride (TG) biogenesis, is highly associated with metabolic abnormalities, such as obesity and type 2 diabetes. However, the effects of DGAT1 silencing in the human liver have not been elucidated. To investigate the effects of DGAT1 silencing in human liver cells, we compared the cellular behaviours of DGAT1‐deficient Huh‐7.5 cell lines with those of control Huh‐7.5 cells. DGAT1‐deficient cells acquired dedifferentiated and stem cell‐like characteristics, such as formation of aggregates in the presence of high levels of growth factors, high proliferation rates and loss of albumin secretion. In relation to aggregate formation, the expression level of various adhesion molecules was significantly altered in DGAT1‐deficient cells. Microarray data analysis and immunostaining of patient tissue samples clearly showed decreased expression levels of DGAT1 and integrin β1 in patients who have nodular cirrhosis without fatty degeneration.  相似文献   

19.
Although endoreduplication is common in plants, little is known about the mechanisms regulating this process. Here, we report the patterns of endoreduplication at the cellular level in the shoot apex of Arabidopsis thaliana L. Heynh. plants grown under short-day conditions. We show that polyploidy is developmentally established in the pith, maturing leaves, and stipules. To investigate the role of the cell cycle genes CDC2aAt, CDC2bAt, CYCB1;1, and CKS1At in the process of endoreduplication, in-situ hybridizations were performed on the vegetative shoot apices. Expression of CDC2aAt, CDC2bAt, and CYCB1;1 was restricted to mitotically dividing cells. In contrast, CKS1At expression was present in both mitotic and endoreduplicating tissues. Our data indicate that CDC2aAt, CDC2bAt, and CYCB1;1 only operate during mitotic divisions, whereas CKS1At may play a role in both the mitotic and endoreduplication cycle. Received: 11 May 1998 / Accepted: 29 September 1998  相似文献   

20.
人工microRNAs对拟南芥At1g13770和At2g23470基因的特异沉默   总被引:1,自引:0,他引:1  
Li WC  Zhao SQ 《遗传》2012,34(3):348-355
DUF647(Domain of unknown function 647)蛋白家族是在真核生物中广泛存在的、高度保守的蛋白家族。拟南芥中该基因家族共有6个成员,迄今为止拟南芥DUF647家族中4个成员的功能尚不清楚。文章以拟南芥内源MIR319a前体为骨架,构建了敲减DUF647家族中2个基因At1g13770和At2g23470表达的人工microRNAs(Artifical microRNAs,amiRNAs)。利用WMD(Web microRNA designer)平台设计分别靶向At1g13770和At2g23470基因的amiRNAs序列,通过重叠PCR置换拟南芥MIR319a前体序列。构建融合amiRNAs前体的植物表达载体pCHF3-amiRNAs,在农杆菌介导下转化拟南芥。RT-PCR分析表明,amiRNAs能够显著抑制At1g13770和At2g23470基因的表达,获得了抑制效果明显的转基因株系。At2g23470-amiRNA转基因植株At2g23470转录水平的下调导致育性严重下降。文章为进一步研究这两个基因的功能奠定了良好的基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号