首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fan HY  He X  Kingston RE  Narlikar GJ 《Molecular cell》2003,11(5):1311-1322
One hallmark of ATP-dependent remodeling complexes is the ability to make nucleosomal DNA accessible to regulatory factors. We have compared two prominent human ATP-dependent remodelers, BRG1 from the SWI/SNF family and SNF2h from the ISWI family, for their abilities to make a spectrum of nucleosomal sites accessible. By measuring rates of remodeling at seven different sites on a mononucleosome and at six different sites on the central nucleosome of a trinucleosome, we have found that BRG1 opens centrally located sites more than an order of magnitude better than SNF2h. We provide evidence that this capability of BRG1 is caused by its ability to create DNA loops on the surface of a nucleosome, even when that nucleosome is constrained by adjacent nucleosomes. This specialized ability to make central sites accessible should allow SWI/SNF family complexes to facilitate binding of nuclear factors in chromatin environments where adjacent nucleosomes might otherwise constrain mobility.  相似文献   

3.
4.
An ATP-dependent DNA translocase domain consisting of seven conserved motifs is a general feature of all ATP-dependent chromatin remodelers. While motifs on the ATPase domains of the yeast SWI/SNF and ISWI families of remodelers are highly conserved, the ATPase domains of these complexes appear not to be functionally interchangeable. We found one reason that may account for this is the ATPase domains interact differently with nucleosomes even though both associate with nucleosomal DNA 17–18 bp from the dyad axis. The cleft formed between the two lobes of the ISW2 ATPase domain is bound to nucleosomal DNA and Isw2 associates with the side of nucleosomal DNA away from the histone octamer. The ATPase domain of SWI/SNF binds to the same region of nucleosomal DNA, but is bound outside of the cleft region. The catalytic subunit of SWI/SNF also appears to intercalate between the DNA gyre and histone octamer. The altered interactions of SWI/SNF with DNA are specific to nucleosomes and do not occur with free DNA. These differences are likely mediated through interactions with the histone surface. The placement of SWI/SNF between the octamer and DNA could make it easier to disrupt histone–DNA interactions.  相似文献   

5.
6.
SWI/SNF- and ISWI-based complexes have distinct yet overlapping chromatin-remodeling activities in vitro and perform different roles in vivo. This leads to the hypothesis that the distinct remodeling functions of these complexes are specifically required for distinct biological tasks. By creating and characterizing chimeric proteins of BRG1 and SNF2h, the motor proteins of human SWI/SNF- and ISWI-based complexes, respectively, we found that a region that includes the ATPase domain specifies the outcome of the remodeling reaction in vitro. A chimeric protein based on BRG1 but containing the SNF2h ATPase domain formed an intact SWI/SNF complex that remodeled like SNF2h. This altered-function complex was active for remodeling and could stimulate expression from some, but not all, SWI/SNF responsive promoters in vivo. Thus, we were able to separate domains of BRG1 responsible for function from those responsible for SWI/SNF complex formation and demonstrate that remodeling functions are not interchangeable in vivo.  相似文献   

7.
8.
9.
10.
Darst RP  Wang D  Auble DT 《The EMBO journal》2001,20(8):2028-2040
SNF2/SWI2-related ATPases employ ATP hydrolysis to disrupt protein-DNA interactions, but how ATP hydrolysis is coupled to disruption is not understood. Here we examine the mechanism of action of MOT1, a yeast SNF2/SWI2-related ATPase that uses ATP hydrolysis to remove TATA binding protein (TBP) from DNA. MOT1 function requires a 17 bp DNA 'handle' upstream of the TATA box, which must be double stranded. Remarkably, MOT1-catalyzed disruption of TBP-DNA does not appear to require DNA strand separation, DNA bending or twisting of the DNA helix. Thus, TBP-DNA disruption is accomplished in a reaction apparently not driven by a change in DNA structure. MOT1 action is supported by DNA templates in which the handle is connected to the TATA box via single-stranded DNA, indicating that the upstream duplex DNA can be conformationally uncoupled from the TATA box. Combining these results with proposed similarities between SNF2/SWI2 ATPases and helicases, we suggest that MOT1 uses ATP hydrolysis to translocate along the handle and thereby disrupt interactions between TBP and DNA.  相似文献   

11.
12.
ATP-dependent chromatin remodeling complexes enable rapid rearrangements in chromatin structure in response to developmental cues. The ATPase subunits of remodeling complexes share homology with the helicase motifs of DExx box helicases. Recent single-molecule experiments indicate that, like helicases, many of these complexes use ATP to translocate on DNA. Despite sharing this fundamental property, two key classes of remodeling complexes, the ISWI class and the SWI/SNF class, generate distinct remodeled products. SWI/SNF complexes generate nucleosomes with altered positions, nucleosomes with DNA loops and nucleosomes that are capable of exchanging histone dimers or octamers. In contrast, ISWI complexes generate nucleosomes with altered positions but in standard structures. Here, we draw analogies to monomeric and dimeric helicases and propose that ISWI and SWI/SNF complexes catalyze different outcomes in part because some ISWI complexes function as dimers while SWI/SNF complexes function as monomers.  相似文献   

13.
ATP-dependent nucleosome remodeling complexes can be grouped into several classes that may differ in their biochemical remodeling activities and biological roles. Although there are a number of biochemical studies of each class of remodeler, there are very little data directly comparing the biochemical activities of remodelers from different classes. We have purified two ATP-hydrolyzing proteins, SNF2H and BRG1, which are members of complexes from two different classes of remodelers. Consistent with previous reports, these two homogeneous proteins can perform remodeling functions. We show significant functional differences between SNF2H and BRG1 in vitro; although both SNF2H and BRG1 hydrolyze ATP and remodel linear arrays of nucleosomes, only BRG1 can remodel mononucleosomes. Also, only BRG1 can alter the topology of nucleosomal plasmids. We propose that these functional differences reflect significant mechanistic differences between the two remodeler classes that will impact their biological roles.  相似文献   

14.
15.
By regulating the structure of chromatin, ATP-dependent chromatin remodeling complexes (remodelers) perform critical functions in the maintenance, transmission and expression of the eukaryotic genome. Although all known chromatin-remodeling complexes contain an ATPase as a central motor subunit, a number of distinct classes have been recognized. Recent studies have emphasized a more extensive functional diversification among closely related chromatin remodeling complexes than previously anticipated. Here, we discuss recent insights in the functional differences between two evolutionary conserved subclasses of SWI/SNF-related chromatin remodeling factors. One subfamily comprises yeast SWI/SNF, fly BAP and mammalian BAF, whereas the other subfamily includes yeast RSC, fly PBAP and mammalian PBAF. We review the subunit composition, conserved protein modules and biological functions of each of these subclasses of SWI/SNF remodelers. In particular, we will focus on the roles of specific subunits in developmental gene control and human diseases. Recent findings suggest that functional diversification among SWI/SNF complexes allows the eukaryotic cell to fine-tune and integrate the execution of diverse biological programs involving the expression, maintenance and duplication of its genome.  相似文献   

16.
ATP-dependent chromatin remodeling complexes can induce the translocation (sliding) of nucleosomes in cis along DNA, but the mechanism by which sliding occurs is not well defined. We previously presented evidence that sliding induced by the human SWI/SNF complex does not occur solely via a proposed "twist-diffusion" mechanism whereby the DNA rotates about its helical axis without displacement from the surface of the nucleosome (Aoyagi, S., and Hayes, J. J. (2002) Mol. Cell. Biol. 22, 7484-7490). Here we examined whether the Xenopus Mi-2 nucleosome remodeling complex induces nucleosome sliding via a twist-diffusion mechanism with nucleosomes assembled onto DNA templates containing branched DNA structures expected to sterically hinder rotation of the DNA helix on the nucleosome surface. We find that the branched DNA-containing nucleosomes undergo xMi-2-catalyzed sliding at a rate and extent identical to that of nucleosomes assembled on native DNA fragments. These results indicate that both the hSWI/SNF and xMi-2 complexes induce nucleosome sliding via a mechanism(s) other than simple twist diffusion and are consistent with models in which the DNA largely maintains its rotational orientation with respect to the histone surface.  相似文献   

17.
The proteins belonging to SWI2/SNF2 family of DNA dependent ATPases are important members of the chromatin remodeling complexes that are implicated in epigenetic control of gene expression. We have identified a human gene with a putative DNA binding domain, which belongs to the INO80 subfamily of SWI2/SNF2 proteins. Here we report the cloning, expression, and functional activity of the domains from hINO80 gene both in terms of the DNA dependent ATPase as well as DNA binding activity. A differential expression of the various domains within this gene is detected in human tissues while a ubiquitous expression is detected in mice. The intranuclear localization is demonstrated using antibodies directed against the DBINO domain of hINO80.  相似文献   

18.
19.
20.
《Epigenetics》2013,8(6):760-768
Recent experimental evidence indicates that cardiac and chromatin remodeling are associated with changes in gene expression mediated by Brahma-related gene 1 (Brg1), a member of the large group of SWI/SNF subunits. The second catalytic member of this family is Brahma (Brm), which shares close sequence homology to Brg1. Despite the sequence similarities, these determinants are found in distinct regulatory complexes; however, the precise nature and role of these remodeling enzymes in the failing heart remains unknown. Here we have hypothesized that Brg1 and Brm form distinct complexes in regulating gene expression in an animal model of cardiac hypertrophy. We have identified that the hypertrophic myocardium is characterized by profound morphological changes associated with increased expression of ANP (Nppa), BNP (Nppb) and β-MHC (Myh7) genes, correlating with reduced expression of the α-MHC (Myh6) and SERCA2A (Atp2a2) genes. Histone deacetylase inhibition prevented left ventricular hypertrophy indicating that the re-expression of gene activity can be associated with both contextual and distinct SWI/SNF interactions. We hypothesize that cardiac hypertrophy and the fetal gene expression program are associated with distinguishable binding of Brm and Brg1 on genes present in distinct complexes, suggesting possible independent-regulatory roles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号