首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Coaggregation assays were performed to investigate interactions between oral Bifidobacterium adolescentis and other oral bacterial species. Bifidobacterium adolescentis OLB6410 isolated from the saliva of healthy humans did not coaggregate with Actinomyces naeslundii JCM8350, Streptococcus mitis OLS3293, Streptococcus sanguinis JCM5708, Veillonella parvula ATCC17745 or Porphyromonas gingivalis OB7124, but it did coaggregate with Fusobacterium nucleatum JCM8532. Subsequent examination of biofilm formation on saliva-coated hydroxyapatite discs using FISH revealed that B. adolescentis OLB6410 could not directly adhere to the coated discs. It did, however, adhere to biofilms of A. naeslundii, V. parvula, and F. nucleatum, although it did not coaggregate with A. naeslundii nor with V. parvula. These results suggest that the adhesion of B. adolescentis to tooth surfaces is mediated by other oral bacteria. Heat- or proteinase K-treated F. nucleatum could not coaggregate with B. adolescentis. Similarly, the coaggregation and coadhesion of proteinase K-treated B. adolescentis were strongly inhibited. It is therefore probable that proteinaceous factors on the cellular surface of B. adolescentis and F. nucleatum are involved in their interaction. The data presented in this study add to our understanding of bifidobacterial colonization in the human oral cavity.  相似文献   

2.
Okuda T  Kokubu E  Kawana T  Saito A  Okuda K  Ishihara K 《Anaerobe》2012,18(1):110-116
The formation of biofilm by anaerobic, Gram-negative bacteria in the subgingival crevice plays an important role in the development of chronic periodontitis. The aim of this study was to characterize the role of coaggregation between Fusobacterium nucleatum and Prevotella species in biofilm formation. Coaggregation between F. nucleatum and Prevotella species was determined by visual assay. Effect of co-culture of the species on biofilm formation was assessed by crystal violet staining. Effect of soluble factor on biofilm formation was also examined using culture supernatant and two-compartment co-culture separated by a porous membrane. Production of autoinducer-2 (AI-2) by the organisms was evaluated using Vibrio harveyi BB170. Cells of all F. nucleatum strains coaggregated with Prevotella intermedia or Prevotella nigrescens with a score of 1-4. Addition of ethylenediamine tetraacetic acid or l-lysine inhibited coaggregation. Coaggregation disappeared after heating of P. intermedia or P. nigrescens cells, or Proteinase K treatment of P. nigrescens cells. Co-culture of F. nucleatum ATCC 25586 with P. intermedia or P. nigrescens strains increased biofilm formation compared with single culture (p < 0.01); co-culture with culture supernatant of these strains, however, did not enhance biofilm formation by F. nucleatum. Production of AI-2 in Prevotella species was not related to enhancement of biofilm formation by F. nucleatum. These findings indicate that physical contact by coaggregation of F. nucleatum strains with P. intermedia or P. nigrescens plays a key role in the formation of biofilm by these strains.  相似文献   

3.
Coaggregation is one of the potential colonization strategies of oral microorganisms, often involving fimbrial structures in the interactions. In this study, the coaggregation characteristics of the rough and smooth genotypes of the periodontal pathogen Peptostreptococcus micros were compared to investigate the role of the fibril-like structures of the rough genotype in coaggregation. Of the 11 oral species tested, only Fusobacterium nucleatum strains and non-encapsulated Porphyromonas gingivalis strains coaggregated with P. micros. No differences in coaggregation between the smooth type (Sm), the rough type (Rg) and the smooth variant of the Rg type (Rg(Sm)) of P. micros were observed. Heat-stable, periodate-sensitive structures on P. micros appeared to interact with heat- and protease-sensitive structures on F. nucleatum and P. gingivalis. These data indicate that these unimodal coaggregations are not mediated by the proteinaceous fibril-like structures of the Rg genotype, but by carbohydrates present on both genotypes of P. micros.  相似文献   

4.
Fusobacterium nucleatum is a common oral anaerobe associated with gingivitis, periodontal disease and preterm deliveries. Coaggregation among oral bacteria is considered to be a significant factor in dental plaque development. Adhesion to host cells was suggested to be important for the F. nucleatum virulence associated with oral inflammation and with preterm births. An uncharacterized fusobacterial galactose inhibitible adhesin mediates coaggregation of F. nucleatum 12230 and F. nucleatum PK1594 with the periodontal pathogen Porphyromonas gingivalis. This adhesin is also involved with the attachment of both fusobacterial strains to host cells. However, it has been suggested that additional unidentified fusobacterial adhesins are involved in F. nucleatum virulence associated with preterm births. In this study, a fluorescence-based high throughput sensitive and reproducible method was developed for measuring bacterial coaggregation and bacterial attachment to mammalian cells. Using this method we found that coaggregation of F. nucleatum 4H with P. gingivalis and its attachment to murine macrophages is less inhibitible by galactose than that of F. nucleatum PK1594. These findings suggest that F. nucleatum 4H can serve as a model organism for identifying nongalactose inhibitible F. nucleatum adhesins considered to be involved in fusobacterial attachment to mammalian cells.  相似文献   

5.
Okuda T  Okuda K  Kokubu E  Kawana T  Saito A  Ishihara K 《Anaerobe》2012,18(1):157-161
The formation of dental plaque biofilm by specific Gram-negative rods and spirochetes plays an important role in the development of periodontal disease. The aim of this study was to characterize biofilm formation by Fusobacterium nucleatum and Capnocytophaga ochracea. Coaggregation between F. nucleatum and Capnocytophaga species was determined by visual assay. Biofilm formation was assessed by crystal violet staining. Enhancement of biofilm formation by F. nucleatum via soluble factor of C. ochracea was evaluated by addition of culture supernatant and a two-compartment separated co-culture system. Production of autoinducer-2 by the tested organisms was evaluated using Vibrio harveyi BB170. F. nucleatum strains coaggregated with C. ochracea ATCC 33596 or ONO-26 strains. Ethylenediamine tetraacetic acid, N-acetyl-d-galactosamine or lysine inhibited coaggregation. Heating or proteinase K treatment of F. nucleatum cells affected coaggregation, whereas the same treatment of C. ochracea cells did not. Co-culture of F. nucleatum with C. ochracea in the same well resulted in a statistically significant increase in biofilm formation. Enhancement of F. nucleatum biofilm formation by a soluble component of C. ochracea was observed using the two-compartment co-culture system (P < 0.05) and confirmed by addition of culture supernatant of C. ochracea (P < 0.01). The present findings indicate that induction of coaggregation and intracellular interaction by release of a diffusible molecule by C. ochracea play a significant role in the formation of biofilm by F. nucleatum and C. ochracea.  相似文献   

6.
Abstract Using a visual coaggregation assay, 43% (6 of 14) of Prevotella nigrescens and 50% (4 of 8) of Prevotella intermedia strains coaggregated with Actinomyces naeslundii strains which represented the six Actinomyces coaggregation groups (A to F). For both species, coaggregation occurred most frequently with A. naeslundii strains from coaggregation groups C, D and E. No coaggregation was observed with Actinomyces israelii , Actinomyces odontolyticus or six oral Streptococcus species. Coaggregation was not inhibited by lactose, saliva or serum. Pretreatment of Prevotella strains with heat, SDS and proteinase K abolished coaggregation when the treated cells were added to untreated Actinomyces strains. The same pretreatment of the Actinomyces strains had no effect on their ability to coaggregate with untreated Prevotella strains. Pretreatment of all coaggregating P. nigrescens strains with trypsin abolished coaggregation, whereas the coaggregation ability of the P. intermedia and Actinomyces strains was resistant to trypsin pretreatment. Pretreatment of the strains of both Prevotella species and the Actinomyces with periodate abolished coaggregation in all cases. These results suggest that the Prevotella strains each possess a protein coaggregation adhesin, which for the P. intermedia strains is resistant to trypsin, that interacts with a non-protein receptor on the A. naeslundii strains.  相似文献   

7.
The coaggregation abilities of probiotic strains might enable it to form a barrier that prevents colonization by pathogenic bacteria. In the present study, the characterization of the coaggregation ability of 19 vaginal lactobacilli was studied. Coaggregation ability of all lactobacilli with Escherichia coli ATCC 11229 was positive. Only the highest coaggregation percentage of Lactobacillus acidophilus S1 was obtained with E. coli ATCC 11229 under both aerobic (71%) and anaerobic conditions (62%). The coaggregation abilities of strains occurred higher at acidic pH than at basic pH values. Moreover, the coaggregation abilities of tested strains against E. coli decreased after heat treatment (70 or 85 °C). Also, the relationship between hydrophobicity and coaggregation of strains was found to be significant. The effect of sonication, some enzymes (lipase and pepsin) and sodium periodate on coaggregation ability of L. acidophilus S1, which is one of the highest potentials on coaggregation ability, was investigated. Sodium periodate did not have a significant effect on coaggregation ability of L. acidophilus S1. The sonicated cell showed lower coaggregation than the control, the supernatant fluid of this sonicated cells showed similar coaggregation ability to the control. Coaggregation abilities of bacteriotherapeutic lactobacilli with pathogenic bacteria can be used for preliminary screening in order to identify potentially probiotic bacteria suitable for human use against urogenital tract infections.  相似文献   

8.
Min KR  Zimmer MN  Rickard AH 《Biofouling》2010,26(8):931-940
The aim of this study was to explore the physicochemical parameters that influence coaggregation between the freshwater bacteria Sphingomonas natatoria 2.1 and Micrococcus luteus 2.13. Using visual coaggregation assays, the effect of different buffers, solutions of differing ionic strength, pH, temperature, and viscosity on the degree of coaggregation was assessed. Coaggregation occurred maximally in distilled water but was inhibited when coaggregates were suspended in a commonly-used oral bacterial coaggregation buffer, saline solutions, and Tris-Cl buffers. Coaggregation was weakly expressed in standard laboratory buffers. The ionic strength of inorganic salt solutions required to inhibit coaggregation depended upon the inorganic salt being tested. Coaggregation occurred at a pH of 3-10, between 5 and 80°C and was inhibited in solutions with a viscosity of 22.5 centipoises at 20°C. Inhibition of coaggregation with NaCl impaired biofilm development. When developing buffers to test for coaggregation, the natural liquid environment should be considered. Coaggregation between S. natatoria 2.1 and M. luteus 2.13 is only affected by physicochemical conditions beyond those typically found in natural freshwater ecosystems. Such a robust ability to coaggregate may enhance the ability of S. natatoria 2.1 and M. luteus 2.13 to develop a niche in freshwater biofilms.  相似文献   

9.
K. R. Min  M. N. Zimmer 《Biofouling》2013,29(8):931-940
The aim of this study was to explore the physicochemical parameters that influence coaggregation between the freshwater bacteria Sphingomonas natatoria 2.1 and Micrococcus luteus 2.13. Using visual coaggregation assays, the effect of different buffers, solutions of differing ionic strength, pH, temperature, and viscosity on the degree of coaggregation was assessed. Coaggregation occurred maximally in distilled water but was inhibited when coaggregates were suspended in a commonly-used oral bacterial coaggregation buffer, saline solutions, and Tris-Cl buffers. Coaggregation was weakly expressed in standard laboratory buffers. The ionic strength of inorganic salt solutions required to inhibit coaggregation depended upon the inorganic salt being tested. Coaggregation occurred at a pH of 3–10, between 5 and 80°C and was inhibited in solutions with a viscosity of 22.5 centipoises at 20°C. Inhibition of coaggregation with NaCl impaired biofilm development. When developing buffers to test for coaggregation, the natural liquid environment should be considered. Coaggregation between S. natatoria 2.1 and M. luteus 2.13 is only affected by physicochemical conditions beyond those typically found in natural freshwater ecosystems. Such a robust ability to coaggregate may enhance the ability of S. natatoria 2.1 and M. luteus 2.13 to develop a niche in freshwater biofilms.  相似文献   

10.
Coaggregation is the specific recognition and adherence of genetically distinct microorganisms. Because most biofilms are polymicrobial communities, there is potential for coaggregation to play an integral role in spatiotemporal biofilm development and the moderation of biofilm community composition. However, understanding of the mechanisms contributing to coaggregation and the relevance of coaggregation to biofilm ecology is at a very early stage. The purpose of this review is to highlight recent advances in the understanding of microbial coaggregation within different environments and to describe the possible ecological ramifications of such interactions. Bacteria that coaggregate with many partner species within different environments will be highlighted, including oral streptococci and oral bridging organisms such as fusobacteria, as well as the freshwater sphingomonads and acinetobacters. Irrespective of environment, it is proposed that coaggregation is essential for the orchestrated development of multi-species biofilms.  相似文献   

11.
The primary habitats of oral veillonellae are the tongue, dental plaque, and the buccal mucosa. Isolates were obtained from each habitat and tested for coaggregation with a battery of other oral bacterial strains. All 59 tongue isolates tested for coaggregation were Veillonella atypica or Veillonella dispar. All but one of them coaggregated with strains of Streptococcus salivarius, a predominant inhabitant of the tongue surface but not subgingival dental plaque. These tongue isolates were unable to coaggregate with most normal members of the subgingival flora such as Actinomyces viscosus, Actinomyces naeslundii, Actinomyces israelii, and Streptococcus sanguis. In contrast, 24 of 29 Veillonella isolates, of which 20 were Veillonella parvula from subgingival dental plaque samples, coaggregated strongly with the three species of Actinomyces, S. sanguis, and other bacteria usually present in subgingival plaque, but they did not coaggregate with S. salivarius. The majority of isolates from the buccal mucosa (42 of 55) has coaggregation properties like those from the tongue. These results indicate that the three human oral Veillonella species are distributed on oral surfaces that are also occupied by their coaggregation partners and thus provide strong evidence that coaggregation plays a critical role in the bacterial ecology of the oral cavity.  相似文献   

12.
The primary habitats of oral veillonellae are the tongue, dental plaque, and the buccal mucosa. Isolates were obtained from each habitat and tested for coaggregation with a battery of other oral bacterial strains. All 59 tongue isolates tested for coaggregation were Veillonella atypica or Veillonella dispar. All but one of them coaggregated with strains of Streptococcus salivarius, a predominant inhabitant of the tongue surface but not subgingival dental plaque. These tongue isolates were unable to coaggregate with most normal members of the subgingival flora such as Actinomyces viscosus, Actinomyces naeslundii, Actinomyces israelii, and Streptococcus sanguis. In contrast, 24 of 29 Veillonella isolates, of which 20 were Veillonella parvula from subgingival dental plaque samples, coaggregated strongly with the three species of Actinomyces, S. sanguis, and other bacteria usually present in subgingival plaque, but they did not coaggregate with S. salivarius. The majority of isolates from the buccal mucosa (42 of 55) has coaggregation properties like those from the tongue. These results indicate that the three human oral Veillonella species are distributed on oral surfaces that are also occupied by their coaggregation partners and thus provide strong evidence that coaggregation plays a critical role in the bacterial ecology of the oral cavity.  相似文献   

13.
Coaggregation is a process by which genetically distinct bacteria become attached to one another via specific molecules. Cumulative evidence suggests that such adhesion influences the development of complex multi-species biofilms. Once thought to occur exclusively between dental plaque bacteria, there are increasing reports of coaggregation between bacteria from other biofilm communities in several diverse habitats. A general role for coaggregation in the formation of multi-species biofilms is discussed.  相似文献   

14.
In this study, the capacity of 30 strains of lactobacilli to coaggregate withCandida albicans ATCC 10239,C. albicans AJD 180 andCandida krusei ATCC 6258 were studiedin vitro. A marked coaggregation withC. albicans was observed for two strains ofLactobacillus crispatus, a strain ofLactobacillus cellobiosus and a strain ofLactobacillus salivarius. Coaggregation occurred at a pH range from 3 to 7, some strains showing optimal binding at high and other strains at low pH. Treatment of lactobacilli at 70 or 85°C for 20 min or treatment of the bacteria with pepsin abolished their capacity of coaggregation. The results may be of importance when trying to establish probiotics for vaginal use.  相似文献   

15.
Arg- (Rgp) and Lys-gingipains (Kgp) are two individual cysteine proteinases produced by Porphyromonas gingivalis , an oral anaerobic bacterium, and are implicated as major virulence factors in a wide range of pathologies of adult periodontitis. Coaggregation of this bacterium with other oral bacteria is an initial and critical step in infectious processes, yet the factors and mechanisms responsible for this process remain elusive. Here we show that the initial translation products of the rgpA , kgp and hemagglutinin hagA genes are responsible for coaggregation of P. gingivalis and that the proteolytic activity of Rgp and Kgp is indispensable in this process. The rgpA rgpB kgp- and rgpA kgp hagA -deficient triple mutants exhibited no coaggregation activity with Actinomyces viscosus , whereas the kgp -null and rgpA rgpB -deficient double mutants significantly retained this activity. Consistently, the combined action of Rgp- and Kgp-specific inhibitors strongly inhibited the coaggregation activity of the bacterium, although single use of Rgp- or Kgp-specific inhibitor significantly retained this activity. We also demonstrate that the 47- and 43-kDa proteins produced from the translation products of the rgpA , kgp , and hagA genes by proteolytic activity of both Rgp and Kgp are responsible for the coaggregation of P. gingivalis.  相似文献   

16.
Lactic acid bacteria (LAB) might offer opportunities as oral probiotics provided candidate strains persist in the mouth. After intake of a mixture of 69 LAB, strains of Lactobacillus fermentum and Lactobacillus salivarius were especially recovered. Coaggregation with other microbes is likely not a prerequisite for persistence since L. salivarius strongly coaggregated with typical oral cavity isolates, whereas L. fermentum failed to display this phenotype.  相似文献   

17.
Interbacterial adhesion between strains of Pseudomonas aeruginosa and strains of indigenous oral bacteria, both of which were isolated from the oral cavity of cystic fibrosis patients, was investigated by the phenomenon of the coaggregation reaction. A total of 22 strains of P. aeruginosa were isolated from the oral cavity of 17 patients and examined for their abilities to coaggregate with 5 strains each of Streptococcus sanguis, Streptococcus mitis, Actinomyces viscosus, and Actinomyces naeslundii. Coaggregation reactions were common between these oral bacteria and both the mucoid and nonmucoid variants of P. aeruginosa. All strains of P. aeruginosa were also able to agglutinate neuraminidase-treated or untreated human erythrocytes of blood types A, B, and O. Positive coaggregation reactions were further characterized by determining the effects of several sugars, and of heat and protease treatments of the bacteria. None of the coaggregtion reactions were inhibited by 0.05 M lactose, galactose, glucose, fucose, or mannose. All coaggregation reactions were dependent upon heat- and protease-sensitive components of the Pseudomonas. Thus, the interbacterial adhesions between P. aeruginosa and the oral bacteria studied appears to involve adhesins on the Pseudomonas cell, which bind to complementary receptors, on the cell surfaces of oral bacteria. The apparent prevalence and diversity of interbacterial adhesions between P. aeruginosa strains originating from the oral cavity of cystic fibrosis patients and strains of the indigenous oral bacteria suggest that some of these reactions may affect the extent to which P. aeruginosa colonizes in the oral cavity of cystic fibrosis patients, and thereby, influence susceptibility of the host to infection.  相似文献   

18.
Adherence of pathogenic bacteria is often an essential first step in the infectious process. The ability of bacteria to adhere to one another, or to coaggregate, may be an important factor in their ability to colonize and function as pathogens in the periodontal pocket. Previously, a strong and specific coaggregation was demonstrated between two putative periodontal pathogens, Fusobacterium nucleatum and Porphyromonas gingivalis. The interaction appeared to be mediated by a protein adhesin on the F. nucleatum cells and a carbohydrate receptor on the P. gingivalis cells. In this investigation, we have localized the adhesin activity of F. nucleatum T18 to the outer membrane on the basis of the ability of F. nucleatum T18 vesicles to coaggregate with whole cells of P. gingivalis T22 and the ability of the outer membrane fraction of F. nucleatum T18 to inhibit coaggregation between whole cells of F. nucleatum T18 and P. gingivalis T22. Proteolytic pretreatment of the F. nucleatum T18 outer membrane fraction resulted in a loss of coaggregation inhibition, confirming the proteinaceous nature of the adhesin. The F. nucleatum T18 outer membrane fraction was found to be enriched for several proteins, including a 42-kDa major outer membrane protein which appeared to be exposed on the bacterial cell surface. Fab fragments prepared from antiserum raised to the 42-kDa outer membrane protein were found to partially but specifically block coaggregation. These data support the conclusion that the 42-kDa major outer membrane protein of F. nucleatum T18 plays a role in mediating coaggregation with P. gingivalis T22.  相似文献   

19.
Human oral cavity as a model for the study of genome-genome interactions   总被引:3,自引:0,他引:3  
The enormous diversity of culturable bacteria within the oral microbial community coupled with experimental accessibility renders the human oral cavity a valuable model to investigate genome-genome interactions. The complex interactions of oral bacteria result in the formation of biofilms on the surfaces of the oral cavity. One mechanism thought to be important in biofilm formation is the coaggregation of bacterial partners. In this paper, we examine the role of coaggregation in oral biofilms and develop protocols to elucidate the spatial organization of bacterial species retained within oral biofilms. To explore these issues, we have employed two experimental systems: the saliva-coated flowcell and the retrievable enamel chip. From flowcell studies, we have determined that coaggregation can greatly influence the ability of an oral bacterial species to grow and be retained within the developing biofilm. To examine the spatial architecture of oral biofilms, fluorescent in situ hybridization protocols were developed that successfully target specific members of the oral microbial community. Together, these approaches provide insight into the development of oral biofilms and expand our understanding of genome-genome interactions.  相似文献   

20.
Fusobacterium nucleatum is considered for its role in colonization of initial and late microorganisms in dental plaque and for its coaggregation with other bacterial species. It is known that action of different antimicrobial substances may interfere with either virulence factors or with host-bacteria interaction. The goal of this study was to examine the influence of subinhibitory concentrations of chlorhexidine, triclosan, penicillin G and metronidazole on hemolytic activity and bacteriocin-like substance production of oral F. nucleatum. A high resistance to penicillin G was observed and 63% of the isolates were beta-lactamase positive. All the tested isolates were susceptible to metronidazole. F. nucleatum isolates grown with or without antimicrobials were alpha-hemolytics. Bacteriocin-like substance production was increased in isolates grown with penicillin G. Impaired production of hemolytic or antagonic substances can suggest a role in the regulation of oral microbiota.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号