首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous work by other authors has shown hat insulin administration increases brain tryptophan levels and serotonin (5–HT) metabolism. The present study partially replicates these results and tests whether these effects could be due to insulin-induced hypoglycemic stress, since stressers such as immobilization or food deprivation also increase brain tryptophan and 5-HT metabolism. Ingestion of a dextrose solution by rats administered insulin (2 I.U./kg) prevents the extreme fall in blood glucose concentration and rise in plasma corticosterone following insulin injections alone. This treatment, however, produces a larger increase in brain tryptophan (30%) than insulin-injected rats allowed only tap water. The greater accumulation of brain tryptophan may reflect an additive effect of the endogenously released insulin to that exogenously administered, since ingestion of the dextrose solution could trigger insulin secretion. In addition, brain tryptophan and 5-HT metabolism were measured in streptozotocin-diabetic rats maintained on several different feeding schedules to control for the effects of hyperphagia. All groups of diabetics showed significant decreases of approx 30% in brain tryptophan concentrations, while 5-HT metabolism was unchanged. This deficit in brain tryptophan is reversed within 2 h after insulin administration (2 I.U./kg). These results indicate that changes in brain tryptophan and 5-HT metabolism following insulin injections are not due to hypoglycemic stress, and that brain tryptophan is low in diabetics but increases above normal after administration of insulin. The results are discussed with respect to the effects of insulin on plasma levels of the neutral amino acids and a possible direct effect of insulin on the uptake of tryptophan by brain.  相似文献   

2.
Depression is often preceded by stressful life events and accompanied with elevated cortisol levels and glucocorticoid resistance. It has been suggested that a major depressive disorder may result from impaired coping with and adaptation to stress. The question is whether or not hypothalamus-pituitary-adrenal (HPA)-axis dysfunction influences the process of adaptation. We examined the effect of a dysregulated HPA-axis on the adaptation to acoustic stimuli in rats with or without preceding restraint stress. HPA-axis function was altered via slow release of corticosterone (CORT, 90 mg) from subcutaneously implanted pellets for 7 or 14 days. The rate of body temperature increases during restraint (10 min) and the response to acoustic stimuli (of 80+120 dB) were used to quantify daily stress reactivity. Rats habituated to either stress regardless of CORT treatment. CORT treatment combined with restraint decreased the initial reactivity and the variability in response, but the rate of habituation was not influenced. These results show that suppressing normal HPA-axis function by chronic exposure to CORT does affect the course of habituation, but not habituation per se. This implies that altered HPA-axis function in depressed patients may not be causally related to stress coping, but instead may influence the course of the disorder.  相似文献   

3.
Hypothalamic tryptophan (TP), serotonin (5HT) and 5-hydroxy-indoleacetic acid (5HIAA), serum tryptophan (free and total), and circulating corticosterone and aldosterone were measured over 24 hr in 60-day-old male rats fed high (60%) and low (6%) protein diets. The diets were administered during specific stages of rat growth: fetal phase and suckling (when the process of mitosis is most rapid), post-lactation, and from the fetal phase through to the adult stage. In all groups, there was a direct correlation between protein intake and hypothalamic and serum TP levels. Remarkable decreases in the amplitude and mesor of the aldosterone rhythm were observed when the hyperprotein diet was administered in the fetal and suckling phases, or from the fetal phase until the adult stages. The rhythm of the serotonin system was significantly altered by a low protein diet: decreased 5-HT amplitude (low protein diet in the fetal stage and suckling), decreased 5-HT amplitude and deranged S-HIAA rhythm (low protein in the post-lactation period), deranged 5-HIAA rhythm (low protein diet throughout the experiment). Lastly, there was a remarkable increase in the corticosterone mesor in rats administered a low protein diet after weaning and in rats constantly given this diet. Growth was greatly inhibited in these two groups of animals, therefore, it cannot be excluded that the high levels of circulating hormone resulted from their debilitated condition.  相似文献   

4.
—Male Wistar rats aged 24 days were divided into three groups. Two groups were given a high protein (250 g/kg casein) and a low protein (30 g/kg casein) diet respectively. The third group was given an amount of the high protein diet containing the same amount of energy as that consumed by the low protein diet rats. The plasma of the animals on low protein contained 20% of the concentration of tryptophan of animals on the other two diets. In these animals the concentration of tryptophan was reduced in the forebrain, cerebellum and brain stem, and the concentrations of 5-HT and 5-hydroxyindoleacetic acid were reduced in the forebrain and brain stem. The low protein diet decreased the total uptake of l -[G-3H]tryptophan into the brain and its incorporation into brain protein. Plasma insulin concentrations were reduced in the low protein and ‘restricted high protein’ animals and the plasma corticosterone concentration was raised in the low protein animals. Exogenous insulin did not raise the plasma tryptophan concentration in the low protein animals but it increased the uptake of l -[G-3H]tryptophan into the brain and its incorporation into protein. Rehabilitation for 7 days restored the plasma and brain tryptophan concentrations and those of brain 5-HT and 5-hydroxyindoleacetic acid to control values.  相似文献   

5.
The control of aldosterone secretion in vivo by serotonin was studied in conscious rats. Serial blood samples were taken from indwelling arterial cannulae before and after i.p. administration of 1 ml (4 g/l) 5-hydroxytryptophan (5-HTP), the precursor of serotonin (5-HT), or saline, and analysed for 5-HTP, serotonin, 5-hydroxyindoleacetic acid, plasma renin activity (PRA), corticosterone, aldosterone, sodium and potassium concentration. The relative contribution of the hypothalamo-pituitary adrenal axis was investigated in animals pretreated with the synthetic glucocorticoid dexamethasone. 5-HTP caused a significant increase in all parameters within 45 min except for plasma sodium and potassium. Saline administration showed no significant effect. Dexamethasone pretreatment significantly impaired the corticosterone and aldosterone response to 5-HTP, although the aldosterone response was merely attenuated. No other parameter was affected by dexamethasone pretreatment. The results show that administration of 5-HTP, which increases serum serotonin levels, stimulates PRA, corticosterone and aldosterone secretion. Dexamethasone pretreatment inhibits the aldosterone response, though not completely, suggesting that the stimulatory action of 5-HTP involves the release of ACTH, which stimulates corticosterone and aldosterone secretion by the adrenal cortex. The failure of dexamethasone to block the aldosterone response completely, suggests the involvement of other mechanisms such as the renin-angiotensin system or a direct action of serotonin on the adrenal zona glomerulosa.  相似文献   

6.
Chi TC  Ho YJ  Chen WP  Chi TL  Lee SS  Cheng JT  Su MJ 《Life sciences》2007,80(20):1832-1838
Although serotonin, serotonin uptake inhibitors and serotonin precursors (including tryptophan or 5-hydroxytryptophan) are known to have hypoglycemic action in rodents or human, it is not clear whether serotonin has hypoglycemic effect in streptozotocin-induced diabetic rats (STZ-diabetic rats). The aim of this study was to investigate the action of serotonin in regulating the plasma glucose STZ-diabetic rats. Plasma glucose, insulin, beta-endorphin and adrenaline were assessed after intraperitoneal administration of serotonin. Serotonin produced hypoglycemic effects without altering plasma insulin and adrenaline levels but increasing beta-endorphin level in STZ-diabetic rats. The glycogen content in soleus muscle was increased at 90 min after application of serotonin (0.3 mg/kg) in STZ-diabetic rats. Dihydroergotamine (non-selective 5-HT receptor blocker) and pimozide (5-HT(7) receptor blocker) abolished the hypoglycemic effect of serotonin in STZ-diabetic rats. Serotonin-induced hypoglycemic effect in association with the increase of beta-endorphin release was abolished in bilaterally adrenalectomized STZ-diabetic rats. In isolated adrenal gland of STZ-diabetic rats, the increase of beta-endorphin secretion in response to serotonin was reduced by either dihydroergotamine or pimozide. Pretreatment with naloxone (1.0 mg/kg, i.p.) prevented serotonin-induced plasma glucose lowering effect in STZ-diabetic rats. The results demonstrated that serotonin may activate 5-HT(7) receptor on rat adrenal gland to enhance of beta-endorphin secretion, which then stimulates the opioid receptor to increase peripheral glucose utilization, resulting in decreased plasma glucose levels in STZ-diabetic rats.  相似文献   

7.
A Albinsson  G Andersson 《Life sciences》1992,51(19):1535-1544
Amperozide is an atypical antipsychotic drug with high affinity for the serotonin 5-HT2 receptor but with low affinity for the dopamine D1 and D2 receptors. Amperozide dose-dependently increased the level of plasma corticocorticosterone in the rat. The effect of amperozide on plasma corticosterone was not inhibited by pretreatment with the 5-HT1A receptor antagonist pindolol or the 5-HT2 receptor antagonist ritanserin. Nor was it inhibited by the dopamine D2 receptor antagonist haloperidol. In contrast to ritanserin, amperozide did not antagonize plasma corticosterone elevation elicited by the serotonin receptor agonist MK-212. Similar to the serotonin uptake inhibitor fluoxetine, amperozide (0.5 mg/kg) significantly (p < 0.05) blocked p-chloroamphetamine (PCA) induced corticosterone release 4 and 16 hrs after amperozide administration. However, amperozide significantly increased the plasma corticosterone concentration also in rats pretreated with parachlorophenylalanine (PCPA). These data suggest that other mechanisms than a 5-HT uptake inhibitory effect are involved in the acute stimulation of corticosterone by amperozide.  相似文献   

8.
Tryptophan depleting protocols are commonly used to study the role of serotonin in mood disorders. The present study examined the impact of a tryptophan-deficient diet and fluoxetine on the serotonergic regulation of neuroendocrine function and body weight. We hypothesized that the regulation of postsynaptic 5-HT1A receptors is dependent on the levels of 5-HT in the synapse. Rats on a control or a tryptophan-deficient diet received daily injections of saline or fluoxetine (5 or 10 mg.kg-1.day-1 ip) from day 7 to day 21. The tryptophan-deficient diet produced a 41% reduction in the level of 5-HT but no change in the density of [3H]paroxetine-labeled 5-HT transporters. Treatment with fluoxetine inhibited the gain in weight in rats maintained on the control diet. The tryptophan-deficient diet produced a significant loss in body weight that was not significantly altered by treatment with fluoxetine. Treatment with fluoxetine produced a dose-dependent desensitization of hormone responses to injection of the 5-HT1A receptor agonist (+/-)8-hydroxy-2-(di-n-propylamino)tetralin ((+/-)8-OH-DPAT). The tryptophan-deficient diet produced an increase in the basal levels of corticosterone but did not alter the basal levels of ACTH or oxytocin. Also, this diet inhibited the magnitude of 8-OH-DPAT-induced increase in plasma levels of ACTH and oxytocin but did not impair the ability of fluoxetine to desensitize the 5-HT1A receptor-mediated increase in plasma hormones. These data suggest that a reserve of 5-HT enables fluoxetine to desensitize postsynaptic 5-HT1A receptors in the hypothalamus. In conclusion, the profound physiological changes induced by tryptophan depletion may complicate the interpretation of studies using this experimental approach.  相似文献   

9.
Female rats exposed to complex emotional stress for 1 hour (restriction in the penal, vibration, loud dissonance music, interrupt light) simultaneously showed more considerable increases in plasma and adrenal corticosterone values than did male animals. Female rat corticosterone levels returned to basal values within 20-120 minutes of stressor-off. As for males the processes of restoration were delayed and accompanied by a 6-fold decrease in the plasma corticosterone levels compared with basal values. The response to additional acute stress (immobilization for 10 minutes) in various times after termination of complex emotional stress (0, 40, 120, 180, 240 minutes) was facilitated in females and remained unchanged in males. Plasma corticosterone levels under stressful conditions were 2-4-fold higher in females than in males. It is concluded that reserve capacity of adaptation system is significantly higher in female rats than in male ones.  相似文献   

10.
2 beta,25-di(0-beta-D-glucopyranosyloxy)-16 alpha,20-dihydroxycucurbit-5-en-3,11,22-trione (cucurbitacin R glucoside--CRG), isolated from Bryonia alba roots, stimulates corticosterone secretion in the adrenal cortex of rats and augments the working capacity of mice. If rats after CRG injections were exposed to immobilization stress, the level of corticosterone in the adrenal cortex and blood plasma was not increased, like in the control groups of rats not receiving CRG. The level of prostaglandin E2 in the adrenal cortex was increased during stress and after CRG administration. These findings indicate that CRG regulates steroidogenesis by influencing the activity of prostaglandin G2-prostaglandin E2 isomerase.  相似文献   

11.
The effects of 1 h/day restraint in plastic tubes for 24 days on the levels of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), tryptophan (TP), and noradrenaline (NA) in six regions of rat brain 20 h after the last restraint period were investigated. The levels of 5-HT, 5-HIAA, and NA but not TP increased in several regions. The effects of 1 h of immobilization on both control and chronically restrained rats were also studied. Immobilization per se did not alter brain 5-HT, 5-HIAA, and TP levels, but decreased NA in the pons plus medulla oblongata and hypothalamus. However, immobilization after chronic restraint decreased 5-HT, increased 5-HIAA, and decreased NA in most brain regions in comparison with values for the chronically restrained rats. We suggest that chronic restraint leads to compensatory increases of brain 5-HT and NA synthesis and sensitizes both monoaminergic systems to an additional acute stress. These changes may affect coping with stress demands.  相似文献   

12.
Plasma concentration, metabolic clearance rate and in vitro adrenal production of corticosterone were measured in Brattleboro male rats homozygous for diabetes insipidus (DI) and in Long-Evans male rats (LE) as controls in resting conditions, under stress caused by pentobarbitone anesthesia and surgery and after three days water deprivation. In resting animals, plasma concentrations and in vitro adrenal production of corticosterone were higher in DI rats than in LE rats. Under pentobarbitone anesthesia and surgery, plasma concentrations and metabolic clearance rate of corticosterone were slightly but not statistically lower in DI rats; however, the in vivo production rate of corticosterone was significantly lower. After three days water deprivation, increasing plasma corticosterone level was consistently higher in DI than in Le rats. These results are not in favour of a reduced glucocorticoid activity of the adrenal of DI rats and of an important role played by vasopressin on the stimulation of the hypothalamopituitary adrenal activity at least in resting conditions; its role may depend upon stressful circumstances.  相似文献   

13.
Fluoxetine, a drug that inhibits serotonin inactivation by reuptake from the synaptic cleft and thereby enhances serotonin nerve function, was used to study the possible role of serotonin neurons in the activation of the pituitary-adrenal system of rats by swim stress or insulin-induced hypoglycemia. Fluoxetine pretreatment enhanced the elevation of plasma corticosterone produced by injection of L-5-hydroxytryptophan but did not significantly alter the elevation of plasma corticosterone by swim stress or by insulin-induced hypoglycemia, even when the stimulus was shown to be submaximal. The results suggest that serotonin neural pathways postulated to stimulate ACTH secretion are not involved in the activation of adrenocortical function by these stimuli.  相似文献   

14.
Female Long-Evans hooded rats with 5-day estrus cycles were subjected to 4 hr of continuous restraint for either 1 or 20 days. On the last day of the stress regimen, plasma and adrenal corticosterone concentrations were determined and classified according to the stage of the estrous cycle. The results indicated that acute stress produced greater plasma corticosterone concentrations than controls only during estrus, whereas in response to chronic stress significant stress-induced increments were observed during estrus and proestrus. The results suggest that the estrous cycle influences the magnitude of the stress-induced increments for both acute and chronic stress. In addition, the pituitary-adrenal system did not show habituation to repeated administration of this stress, but sensitization was observed during proestrus.  相似文献   

15.
D J Haleem 《Life sciences》1990,47(11):971-979
In previous studies, long term treatment with ethanol has been shown to enhance brain 5-hydroxytryptamine 5-(HT) metabolism by increasing the activity of the regulatory enzyme tryptophan hydroxylase and or availability of circulating tryptophan secondarily to an inhibition of hepatic tryptophan pyrrolase. In the present study ethanol treatment given for two weeks decreased hepatic apo-tryptophan pyrrolase but not total tryptophan pyrrolase activity in rats. Tryptophan levels in plasma and brain did not increase significantly. But there was a marked increase of 5-HT but not 5-hydroxyindoleacetic acid (5-HIAA) concentration in brain, suggesting a possible increase in the activity of tryptophan hydroxylase. The effect of a tryptophan load on brain 5-HT metabolism was therefore compared in controls and ethanol treated rats. One hour after tryptophan injection (50 mg/kg i.p.) plasma concentrations of total and free tryptophan were identical in controls and ethanol treated rats, but the increases of brain tryptophan 5-HT and 5-HIAA were considerably greater in the latter group. The results are consistent with long term ethanol treatment enhancing brain serotonin metabolism and show that brain uptake/utilization of exogenous tryptophan is increased in ethanol treated rats and may be useful to understand the role and possible mechanism of tryptophan/serotonin involvement in mood regulation.  相似文献   

16.
D J Haleem 《Life sciences》1990,47(11):971-979
In previous studies, long term treatment with ethanol has been shown to enhance brain 5-hydroxytryptamine 5-(HT) metabolism by increasing the activity of the regulatory enzyme tryptophan hydroxylase and or availability of circulating tryptophan secondarily to an inhibition of hepatic tryptophan pyrrolase. In the present study ethanol treatment given for two weeks decreased hepatic apo-tryptophan pyrrolase but not total tryptophan pyrrolase activity in rats. Tryptophan levels in plasma and brain did not increase significantly. But there was a marked increase of 5-HT but not 5-hydroxyindoleacetic acid (5-HIAA) concentration in brain, suggesting a possible increase in the activity of tryptophan hydroxylase. The effect of a tryptophan load on brain 5-HT metabolism was therefore compared in controls and ethanol treated rats. One hour after tryptophan injection (50 mg/kg i.p.) plasma concentrations of total and free tryptophan were identical in controls and ethanol treated rats, but the increases of brain tryptophan 5-HT and 5-HIAA were considerably greater in the latter group. The results are consistent with long term ethanol treatment enhancing brain serotonin metabolism and show that brain uptake/utilization of exogenous tryptophan is increased in ethanol treated rats and may be useful to understand the role and possible mechanism of tryptophan/serotonin involvement in mood regulation.  相似文献   

17.
Hypothalamic 5-hydroxytryptamine (5-HT) and noradrenaline (NA) as well as plasma corticosterone levels were studied in male rats after 1, 2, 4 and 6 weeks of exposure to 4--7 or 30--31 degrees C. An increase of the NA concentration and a decrease of the 5-HT level was observed after the first week in both cold and warm environment together with an increase of plasma corticosterone levels in both groups. NA, 5-HT and plasma corticosterone levels returned to normal in cold-exposed animals by the 6th week whereas in warm-acclimated rats NA and corticosterone levels regained their initial values and 5-HT concentrations remained low. Changes by the end of the first week of exposure may result from the thermal stress. The low 5-HT levels of warm-adapted animals at the end of the 6th week were probably secondary to the process of adaptation.  相似文献   

18.
The brain concentration of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) increased in rats maintained on restricted volume of low-protein or normal-protein diet, whereas these two agents decreased in rats fed low-protein diet ad libitum. In these two food-restricted groups brain 5-HT and 5-HIAA concentrations were not correlated with brain tryptophan hydroxylase activity, but the concentrations correlated closely with cerebral tryptophan concentrations. The cerebral tryptophan concentration in the two food-restricted groups was not consistent with the total or free tryptophan concentration in plasma. In these restricted rats cerebral tryptophan concentration was elevated, and, unlike the plasma tryptophan, it showed no diurnal variation. These results suggested that tryptophan uptake into the brain from plasma was enhanced by limiting food volume intake. Tryptophan uptake was increased by glucagon injection without changing the plasma tryptophan level, but injection of hydrocortisone or insulin had little or no effect on tryptophan concentration in either the plasma or brain.d-Glucose injection elevated plasma tryptophan concentration but decreased brain tryptophan concentration.  相似文献   

19.
Systemic administration of parachlorophenylalanine (PCPA, 100 mg/kg sc on alternate days X two times), a blocker of serotonin (5-HT) synthesis, considerably decreased brain 5-HT and plasma prolactin (PRL) levels in young male rats. Intraventricular (IVT) administration of 5,7-dihydroxytryptamine (5,7-DHT, 200 mug/20 mul), a neurotoxic drug which destroys 5-HT nerve terminals, induced, 3, 12, and 30 days after treatment, a marked depletion of brain 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) and considerably reduced plasma PRL levels at each time interval. Feeding of rat for up to 4 days with a tryptophan (TP)-deficient diet, caused a depletion of brain 5-HT and 5-HIAA contents and did not modify plasma PRL levels. Addition of TP (2 g/kg of diet) to the TP-deficient diet resulted in increased brain 5-HT and 5-HIAA contents and significantly increased PRL levels. These data provide evidence for the role of the 5-HT system in the maintenance of tonic PRL secretion.  相似文献   

20.
Central serotonin (5-HT) is activated during stressful situations and aggressive interactions in a number of species. Glucocorticoids secreted peripherally during stressful events feed back on central systems and may affect 5-HT mediation of stress-induced behavioral events. To test the neuromodulatory effect of stress hormone secretion, serotonin overflow was measured from the hippocampus of the lizard Anolis carolinensis. Microdialysis was used to collect repeated samples from anesthetized lizards, with perfusate measured by HPLC with electrochemical analysis. Following initially high levels of 5-HT, concentrations stabilized to basal levels after approximately 2 h. Intracortical infusion of 200 ng/ml corticosterone evoked transient increases in 5-HT release of approximately 400%. The effect of corticosterone on 5-HT overflow appears to be dose dependent as 20 ng/ml stimulated an increase of 200%, whereas 2 ng/ml stimulated a 50% increase. Administration of 0.1 and 1 ng/ml GABA via the dialysis probe significantly inhibited 5-HT overflow by 20 and 40%, respectively. The duration of GABA inhibition is greater than the stimulatory response for glucocorticoids. Short-lived glucocorticoid stimulation of 5-HT release suggests a possible mechanism for endocrine mediation of continuously changing social behavioral events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号