首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The 1342 amino acid long beta subunit of Escherichia coli RNA polymerase includes a dispensable region (residues 940-1040) that is absent in homologous RNA polymerase subunits from chloroplasts, eukaryotes, and archaebacteria (Borukhov, S., Severinov, K., Kashlev, M., Lebedev, A., Bass, I., Rowland, G. C., Lim, P.-P., Glass, R. E., Nikiforov, V., and Goldfarb, A. (1991) J. Biol. Chem. 266, 23921-23926). Genetic disruption of this region by in-frame deletion or insertion sensitizes the beta subunit in assembled RNA polymerase molecules to attack by trypsin. We demonstrate that RNA polymerase with the beta polypeptide cleaved in the dispensable region retains normal in vitro activity. Moreover, the RNA polymerase activity is completely restored after denaturation and reconstitution of the enzyme carrying cleaved beta subunit indicating that its carboxyl- and amino-terminal parts fold and assemble into RNA polymerase as separate entities.  相似文献   

3.
Enterococci account for nearly 10% of all nosocomial infections and constitute a significant treatment challenge due to their multidrug resistance properties. One of the well-studied virulence factors of Enterococcus faecalis is a secreted bacterial protease, termed gelatinase, which has been shown to contribute to the process of biofilm formation. Gelatinase belongs to the M4 family of bacterial zinc metalloendopeptidases, typified by thermolysin. Gelatinase is synthesized as a preproenzyme consisting of a signal sequence, a putative propeptide, and then the mature enzyme. We determined that the molecular mass of the mature protein isolated from culture supernatant was 33,030 Da, which differed from the predicted molecular mass, 34,570 Da, by over 1,500 Da. Using N-terminal sequencing, we confirmed that the mature protein begins at the previously identified sequence VGSEV, thus suggesting that the 1,500-Da molecular mass difference resulted from a C-terminal processing event. By using mutants with site-directed mutations within a predicted C-terminal processing site and mutants with C-terminal deletions fused to a hexahistidine tag, we determined that the processing site is likely to be between residues D304 and I305 and that it requires the Q306 residue. The results suggest that the E. faecalis gelatinase requires C-terminal processing for full activation of protease activity, making it a unique enzyme among the members of the M4 family of proteases of gram-positive bacteria.  相似文献   

4.
The identification of natural substrates and their cleavage sites is pivotal to defining proteolytic pathways. Here we report a novel strategy for the identification of the signature of proteolytic cleavage events based on quantitative proteomics. Lysine residues in proteins are blocked by guanidination so that free N-terminals can be labeled with amine-specific iTRAQ reagents. The quantitative nature of iTRAQ reagents allows us to distinguish N-terminals newly formed by proteolytic treatment (neoepitopes) from original N-terminals in proteins. Proteins are digested with trypsin and analyzed using MALDI-TOF/TOF mass spectrometry. Peptides labeled with iTRAQ reagents are distinguished from other peptides by exhibiting intense signature ions in tandem mass spectrometry analysis. A corresponding data acquisition strategy was developed to specifically analyze iTRAQ tagged N-terminal peptides. To validate the procedure, we examined a set of recombinant Escherichia coli proteins that have predicted caspase-3 cleavage motifs. The protein mixture was treated with active or inactive caspase-3 and subsequently labeled with two different iTRAQ reagents. Mass spectrometric analysis located 10 cleavage sites, all corresponding to caspase-3 consensus. Spiking caspase-cleaved substrate into a human cell lysate demonstrated the high sensitivity of the procedure. Moreover, we were able to identify proteolytic cleavage products associated with the induction of cell-free apoptosis. Together, these data reveal a novel application for iTRAQ technology for the detection of proteolytic substrates.  相似文献   

5.
Using the rice salt-tolerant mutant 20 as material, a cDNA library was constructed and two salt-inducible clones, SIR5.5 and SIR8.1, were isolated by differential screening. Homology analysis revealed that the two clones together constituted a chimeric rbcL which encoded a truncated large subunit of Rubisco with 337 amino-acids, plus 64 amino-acids of unknown origin. The expressions of both the normal and the chimeric locus appeared to be developmentally regulated and salt-inducible in shoots of the salt-tolerant mutant 20 and its original variety 77–170. In roots, their expressions were salt-inducible in the salt-tolerant mutant 20 whereas no, or only premature, forms were present in the salt-treated original variety 77–170. Higher concentrations of salt reduced the expressions of both normal rbcL and the chimeric locus. ABA showed no effect on their expression.  相似文献   

6.
Chung TC  Liang YC  Yeh JY  Ou BR 《Tissue & cell》2004,36(3):181-187
The objectives were to investigate the function of the small subunit in the calpain system by expression of the autolytic form of this subunit in L8 myoblasts. Rat post-autolysis small subunit (21 kDa) cDNA expression plasmid was transfected into L8 myoblasts and selected by G418 containing medium. The concentrations of cytosolic micro-calpain in transfected cells, SS2 and SS3, were found to be 15.7 and 17.3% higher than that in L8Neo control cells, and the concentrations of cytosolic m-calpain in SS2 and SS3 cells were 23.3 and 16.6% higher than that in control cells (L8Neo). The half-life of micro-calpain in SS3 cells (36.5 h) was longer than that in L8Neo cells (32.4 h), while the half-life of m-calpain in SS3 cells (40.1 h) was longer than that in L8Neo cell (37.5 h). These results indicated that the expression of truncated small subunit increased the stability of micro- and m-calpain large subunits in cytosol.  相似文献   

7.
The proteolytic digestion of GPIIIa on intact platelets by chymotrypsin, thrombin, plasmin, trypsin, and staphylococcal V8 protease was monitored in immunoblot studies employing three different antibodies to GPIIIa, one of which was made against a 13-residue synthetic peptide containing the amino terminus of GPIIIa. Chymotrypsin, plasmin, and trypsin gave similar patterns, from which it could be inferred that the major products after extensive digestion were two-chain molecules composed of amino-terminal fragments of Mr approximately 17,000-18,000 disulfide bonded to carboxyl-terminal remnants of Mr approximately 58,000-70,000. These patterns suggest that GPIIIa contains a large disulfide-bonded loop of at least 325 amino acids that is susceptible to proteolytic cleavage, and that the 4 cysteine residues between residues 177 and 273 bond with each other. Such a structure can also account for the presence of the PIA1 epitope, which has recently been localized to a polymorphism at position 33 on these late digestion products. Thrombin did not proteolyze GPIIIa even at 2.5 units/ml. Still to be resolved is whether the minor immunoreactive GPIIIa bands found on normal platelets are related to in vivo or in vitro proteolysis and whether GPIIIa proteolysis plays a role in chymotrypsin-induced exposure of the GPIIb/IIIa receptor.  相似文献   

8.
9.
C1r was unable to cleave and activate proenzyme C1s unless first incubated at 37 degrees C in the absence of calcium before the addition of C1s. The acquisition of ability to activate C1s was associated with, and paralleled by, cleavage of each of the two noncovalently bonded 95,000 dalton chains of the molecule into disulfide linked subunits of 60,000 and 35,000 daltons, respectively. Thus, C1r is converted from an inactive form into an enzyme, C1r, able to cleave and activate C1s by proteolytic cleavage in marked analogy to the activation of several other complement enzymes. Trypsin was also found to cleave C1r but at a different site, and its action did not lead to C1r activation. C1r activation was inhibited by calcium, polyanethol sulfonate, C1 inactivator, and DFP but not by a battery of other protease inhibitors. C1 inactivator inhibited C1r by forming a complex with C1r via sites located on the light chain of the molecule. In other studies, cleavage of C1r was not accelerated by the addition of C1r ot C1s. C1r and C1r were found to have the same m.w., sedimentation coefficient, and diffusion coefficients. They differed, however, in charge with C1r migrating as a Beta-globulin and C1r as a gammaglobulin on electrophoresis in agarose. The amino acid composition of C1r and of each of the two polypeptide chains of Clr was determined. Both chains contained carbohydrate. Proteolytic cleavage of the C1r molecule was found to occur on addition of aggregated IgG to a mixture of C1q, C1r, and C1s in the presence of calcium. Neither C1q, C1s nor aggregated IgG alone, not C1r nor C1s induced C1r cleavage. Liquoid, an inhibitor of C1 activation, inhibited C1r cleavage. Thus, proteolytic cleavage of C1r appears to be a biologically meaningful event occurring during the activation of C1.  相似文献   

10.
MYOC, a gene involved in different types of glaucoma, encodes myocilin, a secreted glycoprotein of unknown function, consisting of an N-terminal leucine-zipper-like domain, a central linker region, and a C-terminal olfactomedin-like domain. Recently, we have shown that myocilin undergoes an intracellular endoproteolytic processing. We show herein that the proteolytic cleavage in the linker region splits the two terminal domains. The C-terminal domain is secreted to the culture medium, whereas the N-terminal domain mainly remains intracellularly retained. In transiently transfected 293T cells, the cleavage was prevented by calpain inhibitors, such as calpeptin, calpain inhibitor IV, and calpastatin. Since calpains are calcium-activated proteases, we analyzed how changes in either intra- or extracellular calcium affected the cleavage of myocilin. Intracellular ionomycin-induced calcium uptake enhanced myocilin cleavage, whereas chelation of extracellular calcium by EGTA inhibited the proteolytic processing. Calpains I and II cleaved myocilin in vitro. However, in cells in culture, only RNA interference knockdown of calpain II reduced myocilin processing. Subcellular fractionation and digestion of the obtained fractions with proteinase K showed that full-length myocilin resides in the lumen of the endoplasmic reticulum together with a subpopulation of calpain II. These data revealed that calpain II is responsible for the intracellular processing of myocilin in the lumen of the endoplasmic reticulum. We propose that this cleavage might regulate extracellular interactions of myocilin, contributing to the control of intraocular pressure.  相似文献   

11.
Protogenin (PRTG) is a transmembrane protein of immunoglobulin superfamily, which has multiple roles in embryogenesis as a receptor or an adhesion molecule. In this study, we present sequential proteolytic cleavage of PRTG. The cleavage first occurs at the extracellular domain, then at the interface of the transmembrane and the intracellular domain by γ-secretase, which results in the release of the intracellular domain of PRTG (PRTG-ICD). PRTG-ICD contains putative nuclear localization signal (NLS) at its N-terminal, and translocates to the nucleus in cultured cells and in the neuroepithelial cells of chick embryos. We propose that the PRTG-ICD is cleaved by γ-secretase and translocates to the nucleus, which is potentially implicated in signaling for neural differentiation and in cell adhesion mediated by PRTG.  相似文献   

12.
13.
Detection of proteolytic bond cleavage was achieved by taking advantage of the bioluminescence emission generated by the photoprotein aequorin. A genetically engineered HIV-1 protease substrate was coupled with a cysteine-free mutant of aequorin by employing the polymerase chain reaction to produce a fusion protein that incorporates an optimum natural protease cleavage site. The fusion protein was immobilized on a solid phase and employed as the substrate for the HIV-1 protease. Proteolytic bond cleavage was detected by a decrease in the bioluminescence generated by the aequorin fusion protein on the solid phase. A dose-response curve for HIV-1 protease was constructed by relating the decrease in bioluminescence signal with varying amounts of the protease. The system was also used to evaluate two competitive and one noncompetitive inhibitor of the HIV-1 protease. Among the advantages of this assay is that by using recombinant methods a complete bioluminescently labeled protease recognition site can be designed and produced. The assay yields very sensitive detection limits, which are inherent to bioluminescence-based methods. An application of this system may be in the high-throughput screening of biopharmaceutical drugs that are potential inhibitors of a target protease.  相似文献   

14.
15.
16.
Characterization of a cDNA encoding cottonseed catalase   总被引:4,自引:0,他引:4  
A 1.7 kb cDNA clone was isolated from our lambda gt11 library constructed from poly(A) RNA of 24-h-old cotyledons. The cDNA encodes a full-length catalase peptide (492 amino acid residues). The calculated molecular mass is 56,800, similar to that determined for purified enzyme (57,000 SDS-PAGE). Among higher plant catalases, this cotton catalase shows the highest amino acid sequence identity (85%) to the subunit of homotetrameric maize CAT 1, a developmental counterpart to the homotetrameric CAT A isoform of cotton seeds. Comparison of sequences from cotton, sweet potato, maize CAT 1, and yeast with bovine catalase revealed that the amino acid residues and regions that are involved in catalytic activity and/or required to maintain basic catalase structure, are highly conserved. The C-terminus region, which has the lowest nucleotide sequence identity between plant and mammalian catalases, does not terminate with a tripeptide, S-K/R/H-L, a putative targeting signal for peroxisomal proteins.  相似文献   

17.
18.
19.
The formation of local structure, in short peptides has been probed by examining cleavage patterns and rates of proteolysis of designed sequences with a high tendency to form beta-hairpin structures. Three model sequences which bear fluorescence donor and acceptor groups have been investigated: [see text]. Fluorescence resonance energy transfer (FRET) provides a convenient probe for peptide cleavage. MALDI mass spectrometry has been used to probe sites of cleavage and CD spectroscopy to access the overall backbone conformation using analog sequences, which lack strongly absorbing donor and acceptor groups. The proteases trypsin, subtilisin, collagenase, elastase, proteinase K and thermolysin were used for proteolysis and the rates of cleavage determined. Peptide 3 is the most susceptible to cleavage by all the enzymes except thermolysin, which cleaves all three peptides at comparable rates. Peptides 1 and 2 are completely resistant to the action of trypsin, suggesting that beta-turn formation acts as a deterrent to proteolytic cleavage.  相似文献   

20.
Bacteriophage FP22 has a very broad host range within streptomycetes and appeared to form lysogens of Streptomyces ambofaciens ATCC 15154. FP22 shared strong cross-immunity and antibody cross-reactivity with bacteriophage P23, but not with seven other streptomycete bacteriophages. FP22 particles had a head diameter of 71 nm and a tail length of 307 nm. The FP22 genome was 131 kb, which is the largest bacteriophage genome reported for streptomycetes. The G + C content of the genome was 46 mol% and restriction mapping indicated that FP22 DNA had discrete ends. NaCl- and pyrophosphate-resistant deletion mutants were readily isolated and the extent of the deletions defined at least 23 kb of dispensable DNA in two regions of the genome. The DNA was not cleaved by most restriction endonucleases (or isoschizomers) which have been identified in the streptomycetes, including the tetranucleotide cutter MboI (GATC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号