首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
2.
Binding of myc proteins to canonical and noncanonical DNA sequences.   总被引:30,自引:15,他引:15       下载免费PDF全文
Using an in vitro binding-site selection assay, we have demonstrated that c-Myc-Max complexes bind not only to canonical CACGTG or CATGTG motifs that are flanked by variable sequences but also to noncanonical sites that consist of an internal CG or TG dinucleotide in the context of particular variations in the CA--TG consensus. None of the selected sites contain an internal TA dinucleotide, suggesting that Myc proteins necessarily bind asymmetrically in the context of a CAT half-site. The noncanonical sites can all be bound by proteins of the Myc-Max family but not necessarily by the related CACGTG- and CATGTG-binding proteins USF and TFE3. Substitution of an arginine that is conserved in these proteins into MyoD (MyoD-R) changes its binding specificity so that it recognizes CACGTG instead of the MyoD cognate sequence (CAGCTG). However, like USF and TFE3, MyoD-R does not bind to all of the noncanonical c-Myc-Max sites. Although this R substitution changes the internal dinucleotide specificity of MyoD, it does not significantly alter its wild-type binding sequence preferences at positions outside of the CA--TG motif, suggesting that it does not dramatically change other important amino acid-DNA contacts; this observation has important implications for models of basic-helix-loop-helix protein-DNA binding.  相似文献   

3.
4.
5.
6.
Tissue- and developmental stage-specific expression of the human beta-like globin genes is regulated by a combination of ubiquitous and erythroid-restricted trans factors that bind to cis elements near each of the five active genes. Additional interactions of these cis and trans factors with sequences located in the far 5' end of the cluster occur by as yet obscure mechanisms. Because of the complexity of this regulatory puzzle, precise identification of the determinants that control hemoglobin switching has proven difficult. Phylogenetic footprinting is an evolutionary approach to this problem which is based on the supposition that the basic mechanisms of switching are conserved throughout mammalian phylogeny. Alignment of the 5' flanking regions of the gamma genes of several species allows the identification of footprints of 100% conserved sequence. We have now tested oligomers spanning 13 such phylogenetic footprints and find that 12 are bound by nuclear proteins. One conserved element located at -1086 from the gamma genes exhibits repressor activity in transient transfection studies. The protein that binds this element, CSBP-1 (conserved sequence-binding protein 1), also binds at three sites within a silencer element upstream from the epsilon globin gene. Further analysis reveals that the CSBP-1 binding activity is identical to that of a recently cloned zinc finger protein that has been shown to act as a repressor in other systems. The binding of CSPB-1 to silencer sequences in the epsilon and gamma globin genes may be important in the stage-specific silencing of these genes.  相似文献   

7.
8.
9.
10.
11.
12.
Ubiquitin‐like proteins (UBLs) are activated, transferred and conjugated by E1‐E2‐E3 enzyme cascades. E2 enzymes for canonical UBLs such as ubiquitin, SUMO, and NEDD8 typically use common surfaces to bind to E1 and E3 enzymes. Thus, canonical E2s are required to disengage from E1 prior to E3‐mediated UBL ligation. However, E1, E2, and E3 enzymes in the autophagy pathway are structurally and functionally distinct from canonical enzymes, and it has not been possible to predict whether autophagy UBL cascades are organized according to the same principles. Here, we address this question for the pathway mediating lipidation of the human autophagy UBL, LC3. We utilized bioinformatic and experimental approaches to identify a distinctive region in the autophagy E2, Atg3, that binds to the autophagy E3, Atg12~Atg5‐Atg16. Short peptides corresponding to this Atg3 sequence inhibit LC3 lipidation in vitro. Notably, the E3‐binding site on Atg3 overlaps with the binding site for the E1, Atg7. Accordingly, the E3 competes with Atg7 for binding to Atg3, implying that Atg3 likely cycles back and forth between binding to Atg7 for loading with the UBL LC3 and binding to E3 to promote LC3 lipidation. The results show that common organizational principles underlie canonical and noncanonical UBL transfer cascades, but are established through distinct structural features.  相似文献   

13.
14.
The cytoplasmic protein Dishevelled (Dvl) and the associated membrane-bound receptor Frizzled (Fz) are essential in canonical and noncanonical Wnt signaling pathways. However, the molecular mechanisms underlying this signaling are not well understood. By using NMR spectroscopy, we determined that an internal sequence of Fz binds to the conventional peptide binding site in the PDZ domain of Dvl; this type of site typically binds to C-terminal binding motifs. The C-terminal region of the Dvl inhibitor Dapper (Dpr) and Frodo bound to the same site. In Xenopus, Dvl binding peptides of Fz and Dpr/Frodo inhibited canonical Wnt signaling and blocked Wnt-induced secondary axis formation in a dose-dependent manner, but did not block noncanonical Wnt signaling mediated by the DEP domain. Together, our results identify a missing molecular connection within the Wnt pathway. Differences in the binding affinity of the Dvl PDZ domain and its binding partners may be important in regulating signal transduction by Dvl.  相似文献   

15.
16.
DNase I footprinting experiments showed that AbrB binds to the regulatory regions of the spo0H, kinB, ftsAZ, and pbpE genes. A conserved motif was found in these and other AbrB-binding sites. A search for Bacillus subtilis DNA sequences containing this motif led to the prediction that AbrB would bind to the promoter controlling the bsuB1 methylase gene. DNase I footprinting experiments confirmed this prediction.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号