首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteins exposed at the adult schistosome surface revealed by biotinylation   总被引:5,自引:0,他引:5  
The human blood-dwelling parasite Schistosoma mansoni can survive in the hostile host environment for decades and must therefore display effective strategies to evade the host immune responses. The surface of the adult worm is covered by a living syncytial layer, the tegument, bounded by a complex multilaminate surface. This comprises a normal plasma membrane overlain by a secreted bilayer, the membranocalyx. Recent proteomic studies have identified constituents of the tegument, but their relative locations remain to be established. We labeled the most exposed surface proteins using two impermeant biotinylation reagents that differed only in length. We anticipated that the two reagents would display distinct powers of penetration, thereby producing a differential labeling pattern. The labeled proteins were recovered by streptavidin affinity and identified by tandem mass spectrometry. A total of 28 proteins was identified, 13 labeled by a long form reagent and the same 13 plus a further 15 labeled by a short form reagent. The parasite proteins included membrane enzymes, transporters, and structural proteins. The short form reagent additionally labeled some cytosolic and cytoskeletal proteins, the latter being constituents of the intracellular spines. Only a single secreted protein was labeled, implying a location between the plasma membrane and the membranocalyx or as part of the latter. Four host proteins, three immunoglobulin heavy chains and C3c/C3dg, a fragment of complement C3, were labeled by both reagents indicating their exposed situation. The presence of the degraded complement C3 implicates inhibition of the classical pathway as a major element of the immune evasion strategy, whereas the recovery of only one truly secreted protein points to the membranocalyx acting primarily as an inert protective barrier between the immune system and the tegument plasma membrane. Collectively the labeled parasite proteins merit investigation as potential vaccine candidates.  相似文献   

2.
3.
The schistosome tegument provides a major interface with the host blood stream in which it resides. Our recent proteomic studies have identified a range of proteins present in the complex tegument structure, and two models of protective immunity have implicated surface proteins as mediating antigens. We have used the QconCAT technique to evaluate the relative and absolute amounts of tegument proteins identified previously. A concatamer comprising R- or K-terminated peptides was generated with [(13)C(6)] lysine/arginine amino acids. Two tegument surface preparations were each spiked with the purified SmQconCAT as a standard, trypsin digested, and subjected to MALDI ToF-MS. The absolute amounts of protein in the biological samples were determined by comparing the areas under the pairs of peaks, separated by 6m/z units, representing the light and heavy peptides derived from the biological sample and SmQconCAT, respectively. We report that aquaporin is the most abundant transmembrane protein, followed by two phosphohydrolases. Tetraspanin Tsp-2 and Annexin-2 are also abundant but transporters are scarce. Sm200 surface protein comprised the bulk of the GPI-anchored fraction and likely resides in the secreted membranocalyx. Two host IgGs were identified but in amounts much lower than their targets. The findings are interpreted in relation to the models of protective immunity.  相似文献   

4.
Wilson RA 《Parasitology》2012,139(9):1178-1194
SUMMARY Since 2004 there has been a remarkable increment in our knowledge of the proteins and glycans that reside at, or are released from the surfaces of schistosomes in the mammalian host. Initial characterization of the soluble proteome permits distinctions to be made between the parasite secretome and its necrotome. The principal proteins secreted by the cercaria to gain access to the skin have been described as well as those released by migrating schistosomula. An inventory of transporters, enzymes and structural proteins has been shown to reside the tegument surface, but also immunoglobulins, complement factors and host CD44. The secreted membranocalyx that overlies the plasma membrane may contain a small number of proteins, not simply acting as physical barrier, but its lipid composition remains elusive. Analysis of worm vomitus has provided insights into blood feeding, increasing the number of known lysosomal hydrolases, and identifying a series of carrier proteins potentially involved in uptake of lipids and inorganic ions by the gut epithelium. The egg secretions that aid escape from the tissues include a mixture of MEG-2 and MEG-3 family variant proteins. The utility of identified proteins for the development of new diagnostics, and their potential as vaccines candidates is evaluated.  相似文献   

5.

Background

The membrane-associated and membrane-spanning constituents of the Schistosoma mansoni tegument surface, the parasite''s principal interface with the host bloodstream, have recently been characterized using proteomic techniques. Biotinylation of live worms using membrane-impermeant probes revealed that only a small subset of the proteins was accessible to the reagents. Their position within the multilayered architecture of the surface has not been ascertained.

Methodology/Principal Findings

An enzymatic shaving approach on live worms has now been used to release the most accessible components, for analysis by MS/MS. Treatment with trypsin, or phosphatidylinositol-specific phospholipase C (PiPLC), only minimally impaired membrane integrity. PiPLC-enriched proteins were distinguished from those released in parasite vomitus or by handling damage, using isobaric tagging. Trypsin released five membrane proteins, Sm200, Sm25 and three annexins, plus host CD44 and the complement factors C3 and C4. Nutrient transporters and ion channels were absent from the trypsin fraction, suggesting a deeper location in the surface complex; surprisingly, two BAR-domain containing proteins were released. Seven parasite and two host proteins were enriched by PiPLC treatment, the vaccine candidate Sm29 being the most prominent along with two orthologues of human CD59, potentially inhibitors of complement fixation. The enzymes carbonic anhydrase and APD-ribosyl cyclase were also enriched, plus Sm200 and alkaline phosphatase. Host GPI-anchored proteins CD48 and CD90, suggest ‘surface painting’ during worm peregrination in the portal system.

Conclusions/Significance

Our findings suggest that the membranocalyx secreted over the tegument surface is not the inert barrier previously proposed, some tegument proteins being externally accessible to enzymes and thus potentially located within it. Furthermore, the detection of C3 and C4 indicates that the complement cascade is initiated, while two CD59 orthologues suggest a potential mechanism for its inhibition. The detection of several host proteins is a testimonial to the acquisitive properties of the tegument surface. The exposed parasite proteins could represent novel vaccine candidates for combating this neglected disease.  相似文献   

6.

Background

During invasion of human skin by schistosome blood fluke larvae (cercariae), a multicellular organism breaches the epidermis, basement membrane, and dermal barriers of skin. To better understand the pathobiology of this initial event in schistosome infection, a proteome analysis of human skin was carried out following invasion by cercariae of Schistosoma mansoni.

Methodology and Results

Human skin samples were exposed to cercariae for one-half hour to two hours. Controls were exposed to water used to collect cercariae in an identical manner, and punctured to simulate cercarial tunnels. Fluid from both control and experimental samples was analyzed by LC/MS/MS using a linear ion trap in “triple play” mode. The coexistence of proteins released by cercariae and host skin proteins from epidermis and basement membrane confirmed that cercarial tunnels in skin were sampled. Among the abundant proteins secreted by cercariae was the cercarial protease that has been implicated in degradation of host proteins, secreted proteins proposed to mediate immune invasion by larvae, and proteins implicated in protection of parasites against oxidative stress. Components of the schistosome surface tegument, previously identified with immune serum, were also released. Both lysis and apoptosis of epidermal cells took place during cercarial invasion of the epidermis. Components of lysed epidermal cells, including desmosome proteins which link cells in the stratum granulosum and stratum spinosum, were identified. While macrophage-derived proteins were present, no mast cell or lymphocyte cytokines were identified. There were, however, abundant immunoglobulins, complement factors, and serine protease inhibitors in skin. Control skin samples incubated with water for the same period as experimental samples ensured that invasion-related proteins and host protein fragments were not due to nonspecific degeneration of the skin samples.

Conclusions

This analysis identified secreted proteins from invasive larvae that are released during invasion of human skin. Analysis of specific host proteins in skin invaded by cercariae served to highlight both the histolytic events facilitating cercarial invasion, and the host defenses that attempt to arrest or retard invasion. Proteins abundant in psoriatic skin or UV and heat-stressed skin were not abundant in skin invaded by cercariae, suggesting that results did not reflect general stress in the surgically removed skin specimen. Abundant immunoglobulins, complement factors, and serine protease inhibitors in skin form a biochemical barrier that complements the structural barrier of the epidermis, basement membrane, and dermis. The fragmentation of some of these host proteins suggests that breaching of host defenses by cercariae includes specific degradation of immunoglobulins and complement, and either degradation of, or overwhelming the host protease inhibitor repertoire.  相似文献   

7.
The blood fluke Schistosoma mansoni can live for years in the hepatic portal system of its human host and so must possess very effective mechanisms of immune evasion. The key to understanding how these operate lies in defining the molecular organisation of the exposed parasite surface. The adult worm is covered by a syncytial tegument, bounded externally by a plasma membrane and overlain by a laminate secretion, the membranocalyx. In order to determine the protein composition of this surface, the membranes were detached using a freeze/thaw technique and enriched by sucrose density gradient centrifugation. The resulting preparation was sequentially extracted with three reagents of increasing solubilising power. The extracts were separated by 2-DE and their protein constituents were identified by MS/MS, yielding predominantly cytosolic, cytoskeletal and membrane-associated proteins, respectively. After extraction, the final pellet containing membrane-spanning proteins was processed by liquid chromatographic techniques before MS. Transporters for sugars, amino acids, ions and other solutes were found together with membrane enzymes and proteins concerned with membrane structure. The proteins identified were categorised by their function and putative location on the basis of their homology with annotated proteins in other organisms.  相似文献   

8.
Liu F  Hu W  Cui SJ  Chi M  Fang CY  Wang ZQ  Yang PY  Han ZG 《Proteomics》2007,7(3):450-462
The tegument proteins of schistosome have attracted the most attention in studies of host-parasite interplay, while the host proteins acting at the host-parasite interface remained largely elusive. Here, we undertook a high-throughput proteomic approach to characterize the schistosome-adsorbed host proteins. Fifty five distinct host proteins were confidently identified in S. japonicum samples, including cercaria, schistosomula, adults, eggs, and miracidia, together with tegument and eggshell preparations, of which 23 and 38 host proteins were identified in adult worms and eggs, respectively. Among the schistosome-adsorbed host proteins, host neutrophil elastases were found in the granuloma initiated by schistosome egg deposition, implying that the host innate immune molecules could participate in the granuloma formation for fighting against schistosome invasion, except for the adaptive immune system. In addition, some host proteins, such as proteinase inhibitor and superoxide dismutase, might be utilized by schistosome to counteract or attenuate the host attacks. These parasite-adsorbed host proteins will provide new insights into the host immune responses against schistosome infection, the evasive behavior of the adult worms, and the granuloma formation, which could render an in-depth understanding for the host-parasite interplay.  相似文献   

9.
Schistosome membrane proteins as vaccines   总被引:9,自引:0,他引:9  
Schistosomes are parasitic blood flukes that infect approximately 200 million people and are arguably the most important human helminth in terms of mortality. The outermost surface of intra-mammalian stages of the parasite, the tegument, is the key to the parasite's success, but it is also generally viewed as the most susceptible target for vaccines and drugs. Over the past 2 years the proteome of the Schistosoma mansoni tegument has been investigated and these studies revealed surprisingly few proteins that are predicted to be accessible to the host immune response, namely proteins with at least one membrane-spanning domain. However, of this handful of proteins, some are showing great promise as recombinant vaccines against schistosomiasis at a pre-clinical level. In particular, the tetraspanin family of integral membrane proteins appears to be abundantly represented in the tegument, and convergent data using the mouse vaccine model and correlates of protective immunity in naturally exposed people suggests that this family of membrane proteins offer great promise for schistosomiasis vaccines. With the recent advances in schistosome genomics and proteomics, a new suite of potential vaccine antigens are presented and these warrant detailed investigation and appropriate funding over the next few years.  相似文献   

10.
Herpes simplex virus 1 (HSV-1) enters neurons primarily by fusion of the viral envelope with the host cell plasma membrane, leading to the release of the capsid into the cytosol. The capsid travels via microtubule-mediated retrograde transport to the nuclear membrane, where the viral DNA is released for replication in the nucleus. In the present study, the composition and kinetics of incoming HSV-1 capsids during entry and retrograde transport in axons of human fetal and dissociated rat dorsal root ganglia (DRG) neurons were examined by wide-field deconvolution microscopy and transmission immunoelectron microscopy (TIEM). We show that HSV-1 tegument proteins, including VP16, VP22, most pUL37, and some pUL36, dissociated from the incoming virions. The inner tegument proteins, including pUL36 and some pUL37, remained associated with the capsid during virus entry and transit to the nucleus in the neuronal cell body. By TIEM, a progressive loss of tegument proteins, including VP16, VP22, most pUL37, and some pUL36, was observed, with most of the tegument dissociating at the plasma membrane of the axons and the neuronal cell body. Further dissociation occurred within the axons and the cytosol as the capsids moved to the nucleus, resulting in the release of free tegument proteins, especially VP16, VP22, pUL37, and some pUL36, into the cytosol. This study elucidates ultrastructurally the composition of HSV-1 capsids that encounter the microtubules in the core of human axons and the complement of free tegument proteins released into the cytosol during virus entry.  相似文献   

11.
Fasciola hepatica, a trematode helminth, causes an economically important disease (fasciolosis) in ruminants worldwide. Proteomic analysis of the parasite provides valuable information to understand the relationship between the parasite and its host. Previous studies have identified various parasite proteins, some of which are considered as vaccine candidates or important drug targets. However, the approximate distribution and abundance of the proteins on the surface and within internal parts of the liver fluke are unknown. In this study, two fractions including surface protein fraction (representing surface part of the parasite, near subplasma membrane of the tegument and above the basal membrane of the tegument) and internal protein fraction (representing internal part of the parasite, mainly deeper sides of the tegument including subbasal membrane and other further internal elements of the parasite) were obtained. Components of these two fractions were investigated by an advanced proteomics approach using a high-definition mass spectrometer with nano electrospray ionization source coupled to a high-performance liquid chromatography system (nanoUPLC-ESI-qTOF-MS). FABP1 was found highly abundant in the SPF fraction. Potentially novel F. hepatica proteins showing homology with AKT interacting protein (Xenopus tropicalis), sterol O-acyltransferase 2 (Homo sapiens), and integrin beta 7 (Mus musculus) were identified with high quantities in only the surface fraction of the parasite and may be possible candidates for future control strategies.  相似文献   

12.
The multilaminate vesicles present in the tegument cytoplasm appear to fuse with side channels projecting out into the cytoplasm from the base of the surface pits. Their lamellate contents then unroll and spread out to form a trilaminate membranocalyx lining the pits and covering the tegument surface. The plant lectin concanavalin A appears to stabilize the process of vesicle fusion leading to an aggregation of multilaminate vesicles trapped in the lumen of the surface pits. The membranocalyx can be labelled with cationized ferritin. Chase incubations in normal medium indicate that by 4 h most of the label and the membranocalyx to which it is bound have been lost to the medium. This suggests that under the conditions of these experiments the membranocalyx has a half-life of 2-3 h.  相似文献   

13.
Exposed proteins of the Schistosoma japonicum tegument   总被引:1,自引:0,他引:1  
The ability of the mammalian blood fluke Schistosoma japonicum to survive in the inhospitable environment of the mammalian bloodstream can be attributed, at least in part, to its host-exposed outer surface, called the tegument. The tegument is a dynamic organ and is involved in nutrition, immune evasion and modulation, excretion, osmoregulation and signal transduction. Given its importance for parasite survival, proteins exposed to the host at the surface of the tegument are ideal targets for the development of vaccines and drugs. By biotinylating live adult worms and using a combination of OFFGEL electrophoresis and tandem mass spectrometry 54 proteins were identified as putatively host-exposed in S. japonicum. These included glucose transport proteins, an amino permease, a leucine aminopeptidase and a range of transporters, heat shock proteins and novel immune-active proteins. Members of the tetraspanin protein family and a homologue of Sm 29, a tegument membrane protein from Schistosoma mansoni, both effective vaccine antigens in S. mansoni, were also identified. The fate of labelled surface proteins was monitored over time using electron microscopy and revealed that biotinylated proteins were rapidly internalised from the surface of the tegument and trafficked into the cytoplasmic bridges that connect the distal cytoplasm of the tegument to the underlying cell bodies. The results reported herein dramatically increase the number of S. japonicum proteins known to be exposed to the host and, hence, those of interest as therapeutic targets. The ability of the parasite to rapidly internalise proteins at its surface has implications for the development of vaccines and may explain how these parasites are able to avoid the host immune system for long periods of time.  相似文献   

14.

Background

It is believed that schistosomes evade complement-mediated killing by expressing regulatory proteins on their surface. Recently, six homologues of human CD59, an important inhibitor of the complement system membrane attack complex, were identified in the schistosome genome. Therefore, it is important to investigate whether these molecules could act as CD59-like complement inhibitors in schistosomes as part of an immune evasion strategy.

Methodology/Principal Findings

Herein, we describe the molecular characterization of seven putative SmCD59-like genes and attempt to address the putative biological function of two isoforms. Superimposition analysis of the 3D structure of hCD59 and schistosome sequences revealed that they contain the three-fingered protein domain (TFPD). However, the conserved amino acid residues involved in complement recognition in mammals could not be identified. Real-time RT-PCR and Western blot analysis determined that most of these genes are up-regulated in the transition from free-living cercaria to adult worm stage. Immunolocalization experiments and tegument preparations confirm that at least some of the SmCD59-like proteins are surface-localized; however, significant expression was also detected in internal tissues of adult worms. Finally, the involvement of two SmCD59 proteins in complement inhibition was evaluated by three different approaches: (i) a hemolytic assay using recombinant soluble forms expressed in Pichia pastoris and E. coli; (ii) complement-resistance of CHO cells expressing the respective membrane-anchored proteins; and (iii) the complement killing of schistosomula after gene suppression by RNAi. Our data indicated that these proteins are not involved in the regulation of complement activation.

Conclusions

Our results suggest that this group of proteins belongs to the TFPD superfamily. Their expression is associated to intra-host stages, present in the tegument surface, and also in intra-parasite tissues. Three distinct approaches using SmCD59 proteins to inhibit complement strongly suggested that these proteins are not complement inhibitors and their function in schistosomes remains to be determined.  相似文献   

15.
Discocotyle sagittata oncomiracidia were rapidly killed when incubated in na?ve plasma and immune sera from both rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta), the killing proceeding at a faster rate with blood material from the latter fish species. The lethal activity of na?ve plasma and immune sera was comparable. This was abolished after incubation at 45 degrees C for 30 min and by the addition of EDTA but not EGTA supplemented with Mg(2+), indicating that complement acting via the alternative pathway is responsible for the parasiticidal effect observed. Scanning electron micrographs showed varying degrees of surface disruption in larvae exposed to fish plasma, suggesting that complement acts by breaching the oncomiracidial tegument. Control (untreated) oncomiracidia showed no damage. Ultrastructural damage was more extensive in oncomiracidia exposed to brown trout plasma than to rainbow trout plasma for equal periods, suggesting that the complement cascade may be involved in mediating host susceptibility.  相似文献   

16.
The tegument, or body wall, of schistosomes is the primary tissue for host interaction and site targeted schistosome vaccination. However, many aspects of the cell biology, particularly differentiation and maintenance, remain uncharacterised. A leading vaccine candidate, Schistosoma mansoni tetraspanin 2 has proven efficacy in experimental models, but its function, precise subcellular location in the tegument and role in tegument biology is not well understood. A primary question is whether this molecule is a true surface molecule, that is, whether it appears within the apical membrane of the tegument. Hitherto, the target sequence for antibody localisation studies had not been available for advanced subcellular localisation studies, such as immuno-electron microscopy, due to aldehyde sensitivity. To circumvent this problem, we adapted the methods of high pressure freezing and cryosubstitution with uranyl acetate for immuno-electron microscopy. The tri-dimensional structure of tegument membranes was resolved using electron tomography. Immunolocalisation of Schistosoma mansoni tetraspanin 2 demonstrates that the molecule is localised to tegument membrane compartments, but predominantly within internal structures associated with surface invaginations and internal vesicles. Surprisingly, no label was found at the virtual surface of the parasite. The significance of this localisation pattern is discussed.  相似文献   

17.
Ultrastructural studies, including stereological analyses of micrographs, have been made of five-worm primary infections of Hymenolepis diminuta from C57 mice to determine whether the immune destrobilation/rejection process was accompanied by significant changes in the fine structure of the scolex tegument. Destrobilation/rejection of worms occurred from Days 9-12 after infection. For the first 5 days after infection, the scolex tegument showed no detectable differences in ultrastructure compared with that of "control" worms from either Wistar rats or immunosuppressed C57 mice. By Day 6, large lipid deposits were observed in the tegument and associated musculature of worms from untreated C57 mice. Further, worms recovered from Days 6-8 after infection also showed increased activity of the Golgi apparatus, GER, and mitochondria of the tegument, resulting in increased numbers of discoidal secretory bodies. Concomitant with destrobilation/rejection from Day 9 was a drop in the number of secretory bodies, an increase in autophagic activity throughout the tegument, and a blistering of the tegument surface plasma membrane. The possible functional significance of the results is discussed in relation to host immunity.  相似文献   

18.
The schistosome egg is the key agent responsible both for transmission of the parasite from human to molluscan host, and is the primary cause of pathogenesis in schistosomiasis. Characterisation of its proteome is a crucial step in understanding the egg’s interactions with the mammalian host. We devised a scheme to isolate undeveloped eggs from mature schistosome eggs by Percoll gradient and then fractionate the mature egg into miracidial, hatch fluid and secreted protein preparations. The soluble proteins contained within the five preparations were separated by two-dimensional electrophoresis and their spot patterns compared by image analysis. Large numbers of representative spots were then excised and subjected to tandem mass spectrometry to obtain identities. In this way, the principal components of each sub-proteome were established. Chaperones were the most abundant category, with heat shock protein 70 (HSP70) dominant in the undeveloped egg and Schistosoma mansoni protein 40 (Smp-40) in the miracidium. Cytoskeletal proteins were expressed at similar levels in the undeveloped egg and miracidium, with tubulins the most abundant. The proteins of energy metabolism reflected the change from anaerobic to aerobic metabolism as the miracidium developed. None of the above categories was abundant in the hatch fluid but this peri-miracidial compartment was highly enriched for defence proteins such as thioredoxin. Hatch fluid also contained several host proteins and schistosome proteins of unknown function, highlighting its distinct nature and potentially its role. The egg secretions could not be compared with the other preparations due to their unique composition featuring the previously characterised IL-4-inducing principal of S. mansoni eggs (IPSE), Omega-1, egg secreted protein 15 (ESP15), a micro-exon gene 2 (MEG-2) protein and two members of the recently described MEG-3 family. This last preparation contains the subset of egg proteins that probably enables eggs to escape from host tissues and may also initiate granuloma formation, emphasising the need to establish fully the roles of its components in schistosome biology.  相似文献   

19.
20.
Schistosomes are parasitic platyhelminths that currently infect over 200 million people globally. The parasites can live for years in a putatively hostile environment - the blood of vertebrates. We have hypothesized that the unusual schistosome tegument (outer-covering) plays a role in protecting parasites in the blood; by impeding host immunological signaling pathways we suggest that tegumental molecules help create an immunologically privileged environment for schistosomes. In this work, we clone and characterize a schistosome alkaline phosphatase (SmAP), a predicted ~60 kDa glycoprotein that has high sequence conservation with members of the alkaline phosphatase protein family. The SmAP gene is most highly expressed in intravascular parasite life stages. Using immunofluorescence and immuno-electron microscopy, we confirm that SmAP is expressed at the host/parasite interface and in internal tissues. The ability of living parasites to cleave exogenous adenosine monophosphate (AMP) and generate adenosine is very largely abolished when SmAP gene expression is suppressed following RNAi treatment targeting the gene. These results lend support to the hypothesis that schistosome surface enzymes such as SmAP could dampen host immune responses against the parasites by generating immunosuppressants such as adenosine to promote their survival. This notion does not rule out other potential functions for the adenosine generated e.g. in parasite nutrition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号