首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron-mediated organ damage is common in patients with iron overload diseases, namely, hereditary hemochromatosis. Massive iron deposition in parenchymal organs, particularly in the liver, causes organ dysfunction, fibrosis, cirrhosis, and also hepatocellular carcinoma. To obtain deeper insight into the poorly understood and complex cellular response to iron overload and consequent oxidative stress, we studied iron overload in liver-derived HepG2 cells. Human hepatoma HepG2 cells were exposed to a high concentration of iron for 3 days, and protein expression changes initiated by the iron overload were studied by two-dimensional electrophoresis and mass spectrometry. From a total of 1,060 spots observed, 21 spots were differentially expressed by iron overload. We identified 19 of them; 11 identified proteins were upregulated, whereas 8 identified proteins showed a decline in response to iron overload. The differentially expressed proteins are involved in iron storage, stress response and protection against oxidative stress, protein folding, energy metabolism, gene expression, cell cycle regulation, and other processes. Many of these molecules have not been previously suggested to be involved in the response to iron overload and the consequent oxidative stress.  相似文献   

2.
In humans, hepatic iron overload can lead to hepatocellular carcinoma development. Iron related dysregulation of hepatic genes could play a role in this phenomenon. We previously found that the carbonyl-iron overloaded mouse was a useful model to study the mechanisms involved in the development of hepatic lesions related to iron excess. The aim of the present study was to identify hepatic genes overexpressed in conditions of iron overload by using this model. A suppressive subtractive hybridization was performed between hepatic mRNAs extracted from control and 3% carbonyl-iron overloaded mice during 8 months. This methodology allowed us to identify stearoyl coenzyme A desaturase 1 (SCD1) mRNA overexpression in the liver of iron loaded mice. The corresponding enzymatic activity was also found to be significantly increased. In addition, we demonstrated that both SCD1 mRNA expression and activity were increased in another iron overload model in mice obtained by a single iron-dextran subcutaneous injection. Moreover, we found, in both models, that SCD1 mRNA was not only influenced by the quantity of iron in the liver but also by the duration of iron overload since SCD1 mRNA upregulation was not detected in earlier stages of iron overload. In addition, we found that cellular repartition likely influenced SCD1 mRNA expression. In conclusion, we demonstrated that iron excess in the liver induced both the expression of SCD1 mRNA and its corresponding enzymatic activity. The level and duration of iron overload, as well as cellular repartition of iron excess in the liver likely play a role in this induction. The fact that the expression and activity of SCD1, an enzyme adding a double bound into saturated fatty acids, are induced in two models of iron overload in mice leads to the conclusion that iron excess in the liver may enhance the biosynthesis of unsaturated fatty acids.  相似文献   

3.
4.
Nonspecific chronic hepatitis and increased activities of serum aminotransferases have been reported in cetaceans (dolphins, porpoises, and whales). We identified bottlenose dolphins in our current population with episodic increases in serum aminotransferases, specifically alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and we hypothesized that hematologic and serum biochemical changes in these animals may provide clues as to potential causes of liver disease in cetaceans. A retrospective case-control study involving 1,288 blood samples collected during 1998-2006 from 18 dolphins (six cases and 12 age- and sex-matched healthy controls) was conducted to compare eosinophil and platelet counts; and serum proteins, albumin, globulins, bilirubin, gamma glutamyltransferase (GGT), cholesterol, triglycerides, glucose, iron, and erythrocyte sedimentation rates. Bottlenose dolphins with increased ALT and AST activities were more likely to have higher serum globulins, bilirubin, GGT, iron, glucose, triglycerides, and cholesterol levels, greater erythrocyte sedimentation rates, and lower platelet counts compared to healthy controls. Our findings suggest that dolphins with chronic increases in aminotransferases may have a chronic hepatitis involving iron overload with similar etiologies and pathophysiology compared to terrestrial mammals. Areas for future research include predisposing metabolic risk factors; associations between iron overload and a diabetes-like condition; and a potential overlap syndrome involving autoimmune responses that may or may not be associated with viral infection.  相似文献   

5.
6.
Historically, iron overload in the liver has been associated with the genetic disorders hereditary hemochromatosis and thalassemia and with unusual dietary habits. More recently, elevated hepatic iron levels also have been observed in chronic hepatitis C virus (HCV) infection. Iron overload in the liver causes many changes including induction of oxidative stress, damage to lysosomes and mitochondria, altered oxidant defense systems and stimulation of hepatocyte proliferation. Chronic HCV infection causes numerous pathogenic changes in the liver including induction of endoplasmic reticulum stress, the unfolded protein response, oxidative stress, mitochondrial dysfunction and altered growth control. Understanding the molecular and cellular changes that could occur in a liver which has elevated hepatic iron levels and in which HCV replication and gene expression are ongoing has clinical relevance and represents an area of research in need of further investigation.  相似文献   

7.
Iron is an essential nutrient required for a variety of biochemical processes. It is a vital component of the heme in hemoglobin, myoglobin, and cytochromes and is also an essential cofactor for non-heme enzymes such as ribonucleotide reductase, the limiting enzyme for DNA synthesis. When in excess, iron is toxic because it generates superoxide anions and hydroxyl radicals that react readily with biological molecules, including proteins, lipids, and DNA. As a result, humans possess elegant control mechanisms to maintain iron homeostasis by coordinately regulating iron absorption, iron recycling, and mobilization of stored iron. Disruption of these processes causes either iron-deficient anemia or iron overload disorders. In this minireview, we focus on the roles of recently identified proteins in the regulation of iron homeostasis.  相似文献   

8.
In healthy subjects, the rate of dietary iron absorption, as well as the amount and distribution of body iron are tightly controlled by hepcidin, the iron regulatory hormone. Disruption of systemic iron homeostasis leads to pathological conditions, ranging from anemias caused by iron deficiency or defective iron traffic, to iron overload (hemochromatosis). Other iron-related disorders are caused by misregulation of cellular iron metabolism, which results in local accumulation of the metal in mitochondria. Brain iron overload is observed in neurodegenerative disorders. Secondary hemochromatosis develops as a complication of another disease. For example, repeated blood transfusions, a standard treatment of various anemias characterized by ineffective erythropoiesis, promote transfusional siderosis, while chronic liver diseases are often associated with mild to moderate secondary iron overload. In this critical review, we discuss pathophysiological and clinical aspects of all types of iron metabolism disorders (265 references).  相似文献   

9.
Dietary iron is particularly critical during periods of rapid growth such as in neonatal development. Human and rodent studies have indicated that iron deficiency or excess during this critical stage of development can have significant long- and short-term consequences. Since the requirement for iron changes during development, the availability of adequate iron is critical for the differentiation and maturation of individual organs participating in iron homeostasis. We have examined in rats the effects of dietary iron supplement following neonatal iron deficiency on tissue iron status in relation to erythropoietic ability during 16 wk of postweaning development. This physiological model indicates that postweaning iron-adequate diet following neonatal iron deficiency adversely affects erythroid differentiation in the bone marrow and promotes splenic erythropoiesis leading to splenomegaly and erythrocytosis. This altered physiology of iron homeostasis during postweaning development is also reflected in the inability to maintain liver and spleen iron concentrations and the altered expression of iron regulatory proteins in the liver. These studies provide critical insights into the consequences of neonatal iron deficiency and the dietary iron-induced cellular signals affecting iron homeostasis during early development.  相似文献   

10.
Iron overload can have serious health consequences. Since humans lack an effective means to excrete excess iron, overload can result from an increased absorption of dietary iron or from parenteral administration of iron. When the iron burden exceeds the body's capacity for safe storage, the result is widespread damage to the liver, heart and joints, and the pancreas and other endocrine organs. Clear evidence is now available that iron overload leads to lipid peroxidation in experimental animals, if sufficiently high levels of iron are achieved. In contrast, there is a paucity of data regarding lipid peroxidation in patients with iron overload. Data from experiments using an animal model of dietary iron overload support the concept that iron overload results in an increase in an hepatic cytosolic pool of low molecular weight iron which is catalytically active in stimulating lipid peroxidation. Lipid peroxidation is associated with hepatic mitochondrial and microsomal dysfunction in experimental iron overload, and lipid peroxidation may underlie the increased lysosomal fragility that has been detected in homogenates of liver samples from both iron-loaded human subjects and experimental animals. Some current hypotheses focus on the possibility that the demonstrated functional abnormalities in organelles of the iron-loaded liver may play a pathogenic role in hepatocellular injury and eventual fibrosis. The recent demonstration that hepatic fibrosis is produced in animals with long-term dietary iron overload will allow this model to be used to further investigate the relationship between lipid peroxidation and hepatic injury in iron overload.  相似文献   

11.
Relatively little is known at the functional genomic level about the global host response to human immunodeficiency virus type 1 (HIV-1) infection. Microarray analyses by several laboratories, including our own, have revealed that HIV-1 infection causes significant changes in host mRNA abundance and regulation of several cellular biological pathways. However, it remains unclear what consequences these changes bring about at the protein level. Here we report the expression levels of approximately 3,200 proteins in the CD4(+) CEMx174 cell line after infection with the LAI strain of human immunodeficiency virus type 1 (HIV-1); the proteins were assessed using liquid chromatography-mass spectrometry coupled with stable isotope labeling and the accurate mass and time tag approach. Furthermore, we found that 687 (21%) proteins changed in abundance at the peak of virus production at 36 h postinfection. Pathway analysis revealed that the differential expression of proteins was concentrated in select biological pathways, exemplified by ubiquitin-conjugating enzymes in ubiquitination, carrier proteins in nucleocytoplasmic transport, cyclin-dependent kinase in cell cycle progression, and pyruvate dehydrogenase of the citrate cycle pathways. Moreover, we observed changes in the abundance of proteins with known interactions with HIV-1 viral proteins. Our proteomic analysis captured changes in the host protein milieu at the time of robust virus production, depicting changes in cellular processes that may contribute to virus replication. Continuing analyses are expected to focus on blocking virus replication by targeting these pathways and their effector proteins.  相似文献   

12.
Short-term pure cultures and long-term cocultures of adult rat hepatocytes with rat liver epithelial cells, presumably derived from primitive biliary cells, were used to define in vitro models of iron overloaded hepatocytes in order to understand the molecular mechanism responsible for liver damage occurring in patients with hemochromatosis. In vitro iron overload was obtained by daily addition of ferric nitrilotriacetate to the culture medium. A concentration of 20 microM ferric salt induced hepatocyte iron overload with minimal cytotoxicity as evaluated by cell viability, morphological changes of treated cells and cytosolic enzyme leakage into the culture medium. The effects of iron overload on protein biosynthesis and secretion were studied in both short-term pure cultures and long-term cocultures of hepatocytes. The amounts of intracellular and newly synthesized proteins were never modified by the iron treatment. Furthermore, neither the relative amounts of transferrin and albumin mRNAs nor their translational products were altered by iron overload. Moreover, no change in the transferrin isomeric forms were observed in treated cells. In contrast, a prolonged exposure of cocultured hepatocytes to 20 microM ferric salt led to a significant decrease in the amount of proteins secreted in the medium. This decrease included the two major secreted proteins, namely albumin and transferrin, and probably all other secreted proteins. These results demonstrate that iron loading alters neither the total nor the liver specific protein synthesis activity of cultured hepatocytes. They suggest that chronic overload may impede the protein secretion process.  相似文献   

13.
Iron, an essential element used for a multitude of biochemical reactions, abnormally accumulates in the CNS of patients with multiple sclerosis (MS). The mechanisms of abnormal iron deposition in MS are not fully understood, nor do we know whether these deposits have adverse consequences, that is, contribute to pathogenesis. With some exceptions, excess levels of iron are represented concomitantly in multiple deep gray matter structures often with bilateral representation, whereas in white matter, pathological iron deposits are usually located at sites of inflammation that are associated with veins. These distinct spatial patterns suggest disparate mechanisms of iron accumulation between these regions. Iron has been postulated to promote disease activity in MS by various means: (i) iron can amplify the activated state of microglia resulting in the increased production of proinflammatory mediators; (ii) excess intracellular iron deposits could promote mitochondria dysfunction; and (iii) improperly managed iron could catalyze the production of damaging reactive oxygen species (ROS). The pathological consequences of abnormal iron deposits may be dependent on the affected brain region and/or accumulation process. Here, we review putative mechanisms of enhanced iron uptake in MS and address the likely roles of iron in the pathogenesis of this disease.  相似文献   

14.
The genomes are regularly targeted by epigenetic regulatory mechanisms (DNA methylation, histone modifications, binding of regulatory proteins) in infected cells. In addition, proteins encoded by microbial genomes may disturb the action of a set of cellular promoters by interacting with the same epi-regulatory machinery. The outcome of this may result in epigenetic dysregulation and subsequent cellular dysfunctions that may manifest in or contribute to the development of pathological changes. How epigenetic methylation decorations on DNA and histones are started and established remains largely unknown. The inherited nature of these processes in regulation of genes suggests that they could play key roles in chronic diseases associated with microbial persistence; they might also explain so-called hit-and-run phenomena in infectious disease pathogenesis. Microbes infecting mammals may cause diseases by causing hyper-methylation of key cellular promoters at CpG di-nucleotides and may induce pathological changes by epigenetic reprogramming of host cells they are interacting with elucidation of the epigenetic consequences of microbe–host interactions may have important therapeutic implications because epigenetic processes can be reverted and elimination of microbes inducing patho-epigenetic changes may prevent disease development.  相似文献   

15.
16.
Hereditary hemochromatosis type I is an autosomal-recessive iron overload disease associated with a mutation in HFE gene. The most common mutation, C282Y, disrupts the disulfide bond necessary for the association of HFE with beta-2-microglobulin and abrogates cell surface HFE expression. HFE-deficient mice develop iron overload indicating a central role of the protein in the pathogenesis of hereditary hemochromatosis type I. However, despite significant effort, the role of the HFE protein in iron metabolism is still unknown. To shed a light on the molecular mechanism of HFE-related hemochromatosis we studied protein expression changes elicited by HFE-deficiency in the liver which is the organ critical for the regulation of iron metabolism. We undertook a proteomic study comparing protein expression in the liver of HFE deficient mice with control animals. We compared HFE-deficient animals with control animals with identical iron levels obtained by dietary treatment to identify changes specific to HFE deficiency rather than iron loading. We found 11 proteins that were differentially expressed in the HFE-deficient liver using two-dimensional electrophoresis and mass spectrometry identification. Of particular interest were urinary proteins 1, 2 and 6, glutathione-S-transferase P1, selenium binding protein 2, sarcosine dehydrogenase and thioredoxin-like protein 2. Our data suggest possible involvement of lipocalins, TNF-alpha signaling and PPAR alpha regulatory pathway in the pathogenesis of hereditary hemochromatosis and suggest future targeted research addressing the roles of the identified candidate genes in the molecular mechanism of hereditary hemochromatosis.  相似文献   

17.
Cellular iron homeostasis is maintained by iron regulatory proteins 1 and 2 (IRP1 and IRP2). IRPs bind to iron-responsive elements (IREs) located in the untranslated regions of mRNAs encoding protein involved in iron uptake, storage, utilization and export. Over the past decade, significant progress has been made in understanding how IRPs are regulated by iron-dependent and iron-independent mechanisms and the pathological consequences of IRP2 deficiency in mice. The identification of novel IREs involved in diverse cellular pathways has revealed that the IRP-IRE network extends to processes other than iron homeostasis. A mechanistic understanding of IRP regulation will likely yield important insights into the basis of disorders of iron metabolism. This article is part of a Special Issue entitled: Cell Biology of Metals.  相似文献   

18.
Heme oxygenase-1 (HO-1), which catalyzes heme degradation releasing iron, regulates several processes related to breast cancer. Iron metabolism deregulation is also connected with several tumor processes. However the regulatory relationship between HO-1 and iron proteins in breast cancer remains unclear. Using human breast cancer biopsies, we found that high HO-1 levels significantly correlated with low DMT1 levels. Contrariwise, high HO-1 levels significantly correlated with high ZIP14 and prohepcidin expression, as well as hemosiderin storage. At mRNA level, we found that high HO-1 expression significantly correlated with low DMT1 expression but high ZIP14, L-ferritin and hepcidin expression. In in vivo experiments in mice with genetic overexpression or pharmacological activation of HO-1, we detected the same expression pattern observed in human biopsies. In in vitro experiments, HO-1 activation induced changes in iron proteins expression leading to an increase of hemosiderin, ROS levels, lipid peroxidation and a decrease of the growth rate. Such low growth rate induced by HO-1 activation was reversed when iron levels or ROS levels were reduced. Our findings demonstrate an important role of HO-1 on iron homeostasis in breast cancer. The changes in iron proteins expression when HO-1 is modulated led to the iron accumulation deregulating the iron cell cycle, and consequently, generating oxidative stress and low viability, all contributing to impair breast cancer progression.  相似文献   

19.
In both hereditary hemochromatosis and in the various forms of secondary hemochromatosis, there is a pathologic expansion of body iron stores due mainly to an increase in absorption of dietary iron. Excess deposition of iron in the parenchymal tissues of several organs (e.g. liver, heart, pancreas, joints, endocrine glands) results in cell injury and functional insufficiency. In the liver, the major pathological manifestations of chronic iron overload are fibrosis and ultimately cirrhosis. Evidence for hepatotoxicity due to iron has been provided by several clinical studies, however the specific pathophysiologic mechanisms for hepatocellular injury and hepatic fibrosis in chronic iron overload are poorly understood. The postulated mechanisms of liver injury in chronic iron overload include (a) increased lysosomal membrane fragility, perhaps mediated by iron-induced lipid peroxidation, (b) peroxidative damage to mitochondria and microsomes resulting in organelle dysfunction, (c) a direct effect of iron on collagen biosynthesis and (d) a combination of all of the above.  相似文献   

20.
The budding yeast Saccharomyces cerevisiae has developed several mechanisms to avoid either the drastic consequences of iron deprivation or the toxic effects of iron excess. In this work, we analysed the global gene expression changes occurring in yeast cells undergoing iron overload. Several genes directly or indirectly involved in iron homeostasis showed altered expression and the relevance of these changes are discussed. Microarray analyses were also performed to identify new targets of the iron responsive factor Yap5. Besides the iron vacuolar transporter CCC1, Yap5 also controls the expression of glutaredoxin GRX4, previously known to be involved in the regulation of Aft1 nuclear localization. Consistently, we show that in the absence of Yap5 Aft1 nuclear exclusion is slightly impaired. These studies provide further evidence that cells control iron homeostasis by using multiple pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号