首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Major cutaneous burns result in not only localized tissue damage but broad systemic inflammation causing organ system damage distal to the burn site. It is well recognized that many problems result from the release of inflammatory mediators that target vascular endothelial cells, causing organ dysfunction. The pulmonary microvessels are particularly susceptible to functional abnormalities as a direct consequence of exposure to burn-induced inflammatory mediators. Traditional therapeutic intervention is quite often ineffective in treating burn patients suffering from systemic problems. A possible explanation for this ineffectiveness may be that because so many mediators are released, supposedly activating numerous signaling cascades that interact with each other, targeting of upstream factors in these cascades on an individual basis becomes futile. Therefore, if an end-point effector responsible for endothelial dysfunction following burn injury could be identified, it may present a target for intervention. In this study, we identified phosphorylation of myosin light chain (MLC) as a required element of burn plasma-induced hyperpermeability across rat lung microvascular endothelial cell monolayers. In addition, pharmacological inhibition of myosin light chain kinase (MLCK) and Rho kinase as well as transfection of MLCK-inhibiting peptide blocked actin stress fiber formation and MLC phosphorylation in response to burn plasma. The results suggest that blocking MLC phosphorylation may provide therapeutic intervention in burn patients with the goal of alleviating systemic inflammation-induced endothelial dysfunction.  相似文献   

2.
Alveolar overdistension due to high peak inflation pressures (PIP) is associated with an increased capillary filtration coefficient (K(fc)). To determine which signal pathways contribute to this injury, we perfused isolated rat lungs with 5% bovine albumin in Krebs solution and measured K(fc) after successive 30-min periods of ventilation with peak inflation pressures (PIP) of 7, 20, 30, and 35 cmH(2)O. In a high-PIP control group, K(fc) increased significantly after ventilation with 30 and 35 cmH(2)O PIP, but significant increases were prevented by treatment with 100 microM trifluoperazine, an inhibitor of Ca(2+)/calmodulin, 500 nM ML-7, an inhibitor of myosin light chain kinase (MLCK), a combination of isoproterenol (20 microM) and rolipram (10 microM) to enhance intracellular cAMP levels, and a dose of KT-5720 (2 microM), which inhibits MLCK and protein kinase C. These studies suggest that the Ca(2+)/calmodulin-MLCK pathway augments capillary fluid leak after a modest high-PIP injury and that this is attenuated by kinase inhibition and increased intracellular cAMP.  相似文献   

3.
Increased permeability of blood vessels is an important component of inflammation, but in some circumstances it contributes to tissue injury and organ failure. Previous work showed that p21-activated kinase (PAK) is a critical regulator of endothelial cell-cell junctions through effects on myosin light chain phosphorylation and cell contractility. We now show that blocking PAK function inhibits fluid leak in a mouse model of acute lung injury. In cultured endothelial cells, induction of myosin light chain phosphorylation by PAK is mediated by mitogen-activated protein kinase kinase and extracellular signal-regulated kinase (Erk). Erk in lipopolysaccharide (LPS)-treated mouse lung is activated in a PAK-dependent manner in several cell types, most prominently vascular endothelium. Activation of Erk requires the integrity of the complex between PAK, PIX, and GIT1. Several means of disrupting this complex inhibit stimulation of vascular permeability in vitro. A cell-permeant peptide that blocks binding of PAK to PIX inhibits LPS-induced fluid leak in the mouse lung injury model. We conclude that the PAK-PIX-GIT1 complex is critical for Erk-dependent myosin phosphorylation and vascular permeability.  相似文献   

4.
Transforming growth factor-beta1 (TGF-beta1) is a cytokine critically involved in acute lung injury and endothelial cell (EC) barrier dysfunction. We have studied TGF-beta1-mediated signaling pathways and examined a role of microtubule (MT) dynamics in TGF-beta1-induced actin cytoskeletal remodeling and EC barrier dysfunction. TGF-beta1 (0.1-50 ng/ml) induced dose-dependent decrease in transendothelial electrical resistance (TER) in bovine pulmonary ECs, which was linked to increased actin stress fiber formation, myosin light chain (MLC) phosphorylation, EC retraction, and gap formation. Inhibitor of TGF-beta1 receptor kinase RI (5 microM) abolished TGF-beta1-induced TER decline, whereas inhibitor of caspase-3 zVAD (10 microM) was without effect. TGF-beta1-induced EC barrier dysfunction was linked to partial dissolution of peripheral MT meshwork and decreased levels of stable (acetylated) MT pool, whereas MT stabilization by taxol (5 microM) attenuated TGF-beta1-induced barrier dysfunction and actin remodeling. TGF-beta1 induced sustained activation of small GTPase Rho and its effector Rho-kinase; phosphorylation of myosin binding subunit of myosin specific phosphatase; MLC phosphorylation; EC contraction; and gap formation, which was abolished by inhibition of Rho and Rho-kinase, and by MT stabilization with taxol. Finally, elevation of intracellular cAMP induced by forskolin (50 microM) attenuated TGF-beta1-induced barrier dysfunction, MLC phosphorylation, and protected the MT peripheral network. These results suggest a novel role for MT dynamics in the TGF-beta1-mediated Rho regulation, EC barrier dysfunction, and actin remodeling.  相似文献   

5.
6.
7.
Exposure to particulate matter (PM) associated with air pollution remains a major public health concern, as it has been linked to significant increase in cardiopulmonary morbidity and mortality. Lung endothelial cell (EC) dysfunction is one of the hallmarks of cardiovascular events of lung exposure to PM. However, the role of PM in acute lung injury (ALI) exacerbation and delayed recovery remains incompletely understood. This study tested a hypothesis that PM augments lung injury and EC barrier dysfunction via microtubule-dependent mechanisms. Our data demonstrate that in pulmonary EC PM caused time- and dose-dependent remodeling of actin cytoskeleton and considerable destabilization of the microtubule (MT) network. These events led to the weakening of cell junctions and formation of actin stress fibers, resulting in disruption of lung EC monolayer and increased permeability. PM also caused ROS-dependent activation of MT-specific deacetylase, HDAC6. Suppression of HDAC6 activity by pharmacological inhibitors or siRNA-based depletion of HDAC6 abolished PM-induced EC permeability increase, which was accompanied by reduced activation of stress kinase signaling, inhibition of Rho cascade, decreased IL-6 production and suppressed activation of its downstream target STAT3. Pretreatment of pulmonary EC with IL-6 inhibitor led to inhibition of STAT3 activity and decreased PM-induced hyper-permeability. Because one of the major activators of Rho-GTPase, GEFH1, is localized on the MT, we examined its involvement in PM-caused EC barrier compromise. Inhibition of GEF-H1 activation significantly attenuated PM-induced permeability increase. Moreover, combined inhibition of IL-6 and GEF-H1 signaling exhibited additive protective effect. Taken together, these results demonstrate a critical involvement of MT-associated signaling in the PM-induced exacerbation of lung EC barrier compromise and inflammatory response.  相似文献   

8.
Previous studies have shown that the Ron receptor tyrosine kinase is an important regulator of the acute lung inflammatory response induced by intranasal administration of bacterial LPS. Compared to wild-type mice, complete loss of the Ron receptor in all cell types in?vivo was associated with increased lung damage as determined by histological analyses and several markers of lung injury including increases in pro-inflammatory cytokines such as TNF-α. Tumor-necrosis factor-α is a multifunctional cytokine secreted by macrophages, which plays a major role in inflammation and is a central mediator of several disease states including rheumatoid arthritis and sepsis. Based on increased TNF-α production observed in the Ron-deficient mice, we hypothesized that Ron receptor function in the inflammatory cell compartment is essential for the regulating lung injury in?vivo. To test this hypothesis, we generated myeloid lineage-specific Ron-deficient mice. In this study, we report that loss of Ron signaling selectively in myeloid cells results in increased lung injury following intranasal administration of LPS as measured by increases in TNF-α production, ensuing neutrophil accumulation and increased lung histopathology. These findings corroborate the role of Ron receptor tyrosine kinase as a negative regulator of inflammation and further demonstrate the in?vivo significance of Ron signaling selectively in myeloid cells as a major regulator of this response in?vivo. These data authenticate Ron as a potential target in innate immunity and TNF-α-mediated pathologies.  相似文献   

9.
Myosin light chain phosphatase with its regulatory subunit, myosin phosphatase target subunit 1 (MYPT1) modulates Ca2+-dependent phosphorylation of myosin light chain by myosin light chain kinase, which is essential for smooth muscle contraction. The role of MYPT1 in vascular smooth muscle was investigated in adult MYPT1 smooth muscle specific knock-out mice. MYPT1 deletion enhanced phosphorylation of myosin regulatory light chain and contractile force in isolated mesenteric arteries treated with KCl and various vascular agonists. The contractile responses of arteries from knock-out mice to norepinephrine were inhibited by Rho-associated kinase (ROCK) and protein kinase C inhibitors and were associated with inhibition of phosphorylation of the myosin light chain phosphatase inhibitor CPI-17. Additionally, stimulation of the NO/cGMP/protein kinase G (PKG) signaling pathway still resulted in relaxation of MYPT1-deficient mesenteric arteries, indicating phosphorylation of MYPT1 by PKG is not a major contributor to the relaxation response. Thus, MYPT1 enhances myosin light chain phosphatase activity sufficient for blood pressure maintenance. Rho-associated kinase phosphorylation of CPI-17 plays a significant role in enhancing vascular contractile responses, whereas phosphorylation of MYPT1 in the NO/cGMP/PKG signaling module is not necessary for relaxation.  相似文献   

10.
The epithelial Na(+) transport via an epithelial Na(+) channel (ENaC) expressed in the lung epithelium would play a key role in recovery from lung edema at acute lung injury by removing the fluid in lung luminal space. The lung edema causes dysfunction of gas exchange, decreasing oxygen pressure level of artery [P(aO(2))]. To study if ENaC plays a key role in recovering P(aO(2)) from a decreased level to a normal one in acute lung injury, we applied benzamil (20microM, a specific blocker of ENaC) to the lung luminal space in acute lung injury treated with high frequency oscillation ventilation (HFOV) that is a lung-protective ventilation with a lower tidal volume and a smaller pressure swing than conventional mechanical ventilation (CMV). Benzamil facilitated the recovery of P(aO(2)) in acutely injured lung with HFOV but not CMV. The observation suggests that in acutely injured lung treated with HFOV an ENaC blocker, benzamil, can be applied as a therapeutic drug for acute lung injury combing with HFOV.  相似文献   

11.
We studied the effects of various protein kinase inhibitors on the attachment of mouse lung carcinoma 3LL cells to the fibronectin (FN) substratum. Calmodulin antagonists (W-7 and W-13) and myosin light chain kinase inhibitors (ML-7 and ML-9) exhibited the inhibitory effect for the attachment, while inhibitors of protein kinases A and C were ineffective. Since Arg-Gly-Asp-containing hexapeptide blocked the attachment, cell surface FN receptor appeared to be involved in this mechanism. These results support the hypothesis that the cell attachment requires the rearrangement of the cytoskeleton in association with the phosphorylation of myosin light chain which would lead to the clustering of the cell surface FN receptors.  相似文献   

12.
Preterm delivery is frequently preceded by chorioamnionitis, resulting in exposure of the fetal lung to inflammation. We hypothesized that ventilation of the antenatally inflamed lung would result in amplification of the lung injury. Therefore, we induced fetal lung inflammation with intra-amniotic endotoxin (10 mg of Escherichia coli 055:B5) 4 days before premature delivery at 130 days of gestation. Lung function and lung inflammation after surfactant treatment and 4 h of mechanical ventilation were evaluated. Inflammatory cell numbers in amniotic fluid were increased >10-fold by antenatal endotoxin exposure. Antenatal endotoxin exposure had minimal effects on blood pressure, heart rate, lung compliance, and blood gas values. The endotoxin-exposed lungs required higher ventilation pressures. Ventilation did not increase the number of inflammatory cells or the protein in bronchoalveolar lavage fluid of the endotoxin-exposed animals above that measured in endotoxin-exposed fetuses that were not ventilated. IL-1beta, IL-6, and IL-8 mRNA in cells from bronchoalveolar lavage fluid were increased by antenatal endotoxin exposure but not changed by ventilation. IL-1beta and IL-8 protein was increased in lung tissue by 4 h of ventilation. Very little inflammation was induced by ventilation in this premature lamb model of surfactant treatment and gentle ventilation. After lung inflammation was induced by intra-amniotic endotoxin injection, ventilation did not increase lung injury.  相似文献   

13.
Although hepatic myofibroblast migration plays a key role in the liver's injury response, the signal transduction pathways mediating the migration of this cell type are uncertain. Recently, we reported that lysophosphatidic acid (LPA) stimulates the migration of hepatic myofibroblasts. The goal of this study was to test the hypothesis that rho and p38 MAP kinase signaling pathways mediate LPA-stimulated hepatic myofibroblast migration. We measured migration, myosin regulatory light chain and p38 MAP kinase phosphorylation, and contractile force generation by human hepatic myofibroblasts. LPA stimulated migration in a dose-dependent and saturable manner that was partially blocked by Y-27632, a rho-associated kinase inhibitor, as well as by SB-202190, a p38 MAP kinase inhibitor. LPA also induced myosin regulatory light chain phosphorylation and contractile force generation in a Y-27632 dependent, and SB-202190 independent fashion. Moreover, LPA stimulated a dose-dependent and saturable phosphorylation of p38 MAP kinase, which was not altered by Y-27632 or C3 transferase, a rho inactivator. These novel results suggest that LPA stimulates hepatic myofibroblast migration via distinct pathways that signal through rho and p38 MAP kinase.  相似文献   

14.
Lung inflammatory responses in the absence of infection are considered to be one of primary mechanisms of ventilator-induced lung injury. Here, we determined the role of calpain in the pathogenesis of lung inflammation attributable to mechanical ventilation. Male C57BL/6J mice were subjected to high (28 ml/kg) tidal volume ventilation for 2 h in the absence and presence of calpain inhibitor I (10 mg/kg). To address the isoform-specific functions of calpain 1 and calpain 2 during mechanical ventilation, we utilized a liposome-based delivery system to introduce small interfering RNAs targeting each isoform in pulmonary vasculature in vivo. Mechanical ventilation with high tidal volume induced rapid (within minutes) and persistent calpain activation and lung inflammation as evidenced by neutrophil recruitment, production of TNF-α and IL-6, pulmonary vascular hyperpermeability, and lung edema formation. Pharmaceutical calpain inhibition significantly attenuated these inflammatory responses caused by lung hyperinflation. Depletion of calpain 1 or calpain 2 had a protective effect against ventilator-induced lung inflammatory responses. Inhibition of calpain activity by means of siRNA silencing or pharmacological inhibition also reduced endothelial nitric oxide (NO) synthase (NOS-3)-mediated NO production and subsequent ICAM-1 phosphorylation following high tidal volume ventilation. These results suggest that calpain activation mediates early lung inflammation during ventilator-induced lung injury via NOS-3/NO-dependent ICAM-1 phosphorylation and neutrophil recruitment. Inhibition of calpain activation may therefore provide a novel and promising strategy for the prevention and treatment of ventilator-induced lung injury.  相似文献   

15.
High-pressure ventilation triggers different inflammatory and matrix remodeling responses within the lung. Although some of them may cause injury, the involvement of these mediators in repair is largely unknown. To identify mechanisms of repair after ventilator-induced lung injury (VILI), mice were randomly assigned to baseline conditions (no ventilation), injury [90 min of high-pressure ventilation without positive end-expiratory pressure (PEEP)], repair (injury followed by 4 h of low-pressure ventilation with PEEP), and ventilated controls (low-pressure ventilation with PEEP for 90 and 330 min). Histological injury and lung permeability increased during injury, but were partially reverted in the repair group. This was accompanied by a proinflammatory response, together with increases in TNF-α and IFN-γ, which returned to baseline during repair, and a decrease in IL-10. However, macrophage inflammatory protein-2 (MIP-2) and matrix metalloproteinases (MMP)-2 and -9 increased after injury and persisted in being elevated during repair. Mortality in the repair phase was 50%. Survivors showed increased cell proliferation, lower levels of collagen, and higher levels of MIP-2 and MMP-2. Pan-MMP or specific MMP-2 inhibition (but not MIP-2, TNF-α, or IL-4 inhibition) delayed epithelial repair in an in vitro wound model using murine or human alveolar cells cultured in the presence of bronchoalveolar lavage fluid from mice during the repair phase or from patients with acute respiratory distress syndrome, respectively. Similarly, MMP inhibition with doxycycline impaired lung repair after VILI in vivo. In conclusion, VILI can be reverted by normalizing ventilation pressures. An adequate inflammatory response and extracellular matrix remodeling are essential for recovery. MMP-2 could play a key role in epithelial repair after VILI and acute respiratory distress syndrome.  相似文献   

16.
Activated neutrophils contribute to the development and severity of acute lung injury (ALI). Phosphoinositide 3-kinases (PI3-K) and the downstream serine/threonine kinase Akt/protein kinase B have a central role in modulating neutrophil function, including respiratory burst, chemotaxis, and apoptosis. In the present study, we found that exposure of neutrophils to endotoxin resulted in phosphorylation of Akt, activation of NF-kappaB, and expression of the proinflammatory cytokines IL-1beta and TNF-alpha through PI3-K-dependent pathways. In vivo, endotoxin administration to mice resulted in activation of PI3-K and Akt in neutrophils that accumulated in the lungs. The severity of endotoxemia-induced ALI was significantly diminished in mice lacking the p110gamma catalytic subunit of PI3-K. In PI3-Kgamma(-/-) mice, lung edema, neutrophil recruitment, nuclear translocation of NF-kappaB, and pulmonary levels of IL-1beta and TNF-alpha were significantly lower after endotoxemia as compared with PI3-Kgamma(+/+) controls. Among neutrophils that did accumulate in the lungs of the PI3-Kgamma(-/-) mice after endotoxin administration, activation of NF-kappaB and expression of proinflammatory cytokines was diminished compared with levels present in lung neutrophils from PI3-Kgamma(+/+) mice. These results show that PI3-K, and particularly PI3-Kgamma, occupies a central position in regulating endotoxin-induced neutrophil activation, including that involved in ALI.  相似文献   

17.
18.
Lung inflammation and alterations in endothelial cell (EC) permeability are key events to development of acute lung injury (ALI). Protective effects of atrial natriuretic peptide (ANP) have been shown against inflammatory signaling and endothelial barrier dysfunction induced by gram-negative bacterial wall liposaccharide. We hypothesized that ANP may possess more general protective effects and attenuate lung inflammation and EC barrier dysfunction by suppressing inflammatory cascades and barrier-disruptive mechanisms shared by gram-negative and gram-positive pathogens. C57BL/6J wild-type or ANP knockout mice (Nppa-/-) were treated with gram-positive bacterial cell wall compounds, Staphylococcus aureus-derived peptidoglycan (PepG) and/or lipoteichoic acid (LTA) (intratracheal, 2.5 mg/kg each), with or without ANP (intravenous, 2 μg/kg). In vitro, human pulmonary EC barrier properties were assessed by morphological analysis of gap formation and measurements of transendothelial electrical resistance. LTA and PepG markedly increased pulmonary EC permeability and activated p38 and ERK1/2 MAP kinases, NF-κB, and Rho/Rho kinase signaling. EC barrier dysfunction was further elevated upon combined LTA and PepG treatment, but abolished by ANP pretreatment. In vivo, LTA and PepG-induced accumulation of protein and cells in the bronchoalveolar lavage fluid, tissue neutrophil infiltration, and increased Evans blue extravasation in the lungs was significantly attenuated by intravenous injection of ANP. Accumulation of bronchoalveolar lavage markers of LTA/PepG-induced lung inflammation and barrier dysfunction was further augmented in ANP-/- mice and attenuated by exogenous ANP injection. These results strongly suggest a protective role of ANP in the in vitro and in vivo models of ALI associated with gram-positive infection. Thus ANP may have important implications in therapeutic strategies aimed at the treatment of sepsis and ALI-induced gram-positive bacterial pathogens.  相似文献   

19.
Endotoxin-induced lung injury in rats: role of eicosanoids   总被引:7,自引:0,他引:7  
We studied lung vascular injury and quantitated lung eicosanoids in rats after intraperitoneal injection of Salmonella enteritidis endotoxin. Within 40 min after endotoxin injection (20 mg/kg), lung tissue thromboxane B2 doubled, although 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) increased by 8- to 10-fold. Lung 5-hydroxyeicosatetraenoic acid and leukotriene C4 were variably increased by endotoxin. The levels of all eicosanoids returned to base line 6 h after endotoxin challenge. Lung vascular injury, as assessed by the extravascular accumulation of 125I-albumin and water in isolated perfused lungs, was observed 90 min after endotoxin injection (0.02-20 mg/kg) in vivo. Inhibition of the cyclooxygenase pathway with indomethacin and the lipoxygenase pathway with diethylcarbamazine and 2-(12-hydroxydodeca-5,10-dinyl)-3,5,6-trimethyl-1,4-benzoqui none failed to attenuate endotoxin-induced lung injury. In addition, essential fatty acid deficiency, which markedly reduced lung tissue levels of 6-keto-PGF1 alpha, thromboxane B2, and leukotriene C4, did not protect against endotoxin injury. We conclude that although lung eicosanoids are activated during endotoxemia, they do not play a crucial role in the development of acute lung vascular injury in rats.  相似文献   

20.
Prostaglandin E(2) (PGE(2)) and prostacyclin are lipid mediators produced by cyclooxygenase and implicated in the regulation of vascular function, wound repair, inflammatory processes, and acute lung injury. Although protective effects of these prostaglandins (PGs) are associated with stimulation of intracellular cAMP production, the crosstalk between cAMP-activated signal pathways in the regulation of endothelial cell (EC) permeability is not well understood. We studied involvement of cAMP-dependent kinase (PKA), cAMP-Epac-Rap1 pathway, and small GTPase Rac in the PGs-induced EC barrier protective effects and cytoskeletal remodeling. PGE(2) and PGI(2) synthetic analog beraprost increased transendothelial electrical resistance and decreased dextran permeability, enhanced peripheral F-actin rim and increased intercellular adherens junction areas reflecting EC barrier-protective response. Furthermore, beraprost dramatically attenuated thrombin-induced Rho activation, MLC phosphorylation and EC barrier dysfunction. In vivo, beraprost attenuated lung barrier dysfunction induced by high tidal volume mechanical ventilation. Both PGs caused cAMP-mediated activation of PKA-, Epac/Rap1- and Tiam1/Vav2-dependent pathways of Rac1 activation and EC barrier regulation. Knockdown of Epac, Rap1, Rac-specific exchange factors Tiam1 and Vav2 using siRNA approach, or inhibition of PKA activity decreased Rac1 activation and PG-induced EC barrier enhancement. Thus, our results show that barrier-protective effects of PGE(2) and prostacyclin on pulmonary EC are mediated by PKA and Epac/Rap pathways, which converge on Rac activation and lead to enhancement of peripheral actin cytoskeleton and adherens junctions. These mechanisms may mediate protective effects of PGs against agonist-induced lung vascular barrier dysfunction in vitro and against mechanical stress-induced lung injury in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号